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1. Introduction

One of important research areas in substructural

(core) fuzzy logic, called (core) semilinear logic, is to

consider involutive extensions of basic substructural

fuzzy logic systems. For instance, after Yang (2016)

introduced standard algebraic semantics1) for the fuzzy

logic system MIAL (Mianorm logic), he (2017a)

investigated such semantics for its involutive extension

IMIAL (Involutive MIAL).2)

Some involutive extensions having standard algebraic

semantics require the fixpoint axiom t ↔ f (FP) as well

as the axioms for involution. For instance, the involutive

extension of UML (Uinorm mingle logic) having such

semantics, i.e., the system IUML (Involutive uninorm

mingle logic), requires both fixpoint and involution

axioms. This means that the system UML with the

involution axiom (RM
T
) is not standard complete, i.e,

not complete with respect to (w.r.t.) standard algebraic

semantics (see Yang (2019)).

In this respect, it is interesting to study involutive

extensions of basic substructural fuzzy logics with

fixpoint and their standard completeness. Here we note

1) Standard algebraic semantics is algebraic semantics on the real unit interval

[0, 1]. Fuzzy (semilinear resp) logics having with standard algebraic

semantics are called core fuzzy (semilinear resp) logics and such

completeness is called standard completeness.
2) For more such examples, see Yang (2020a).
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that Yang (2020b) recently investigated fixpointed

semilinear logics and their standard completeness. This

gives a natural question as follows.

Q: Can we provide standard completeness for the

involutive extension of those fixpointed semilinear

logics?

The answer is ‘yes’. To verify it, first we

introduce involutive extensions of the fixpointed

semilinear logics introduced in Yang (2020b) and

consider their algebraic completeness. We next provide

some examples of involutive fixpointed mianorms.

Finally, we study standard completeness for those

logics.

2. Logics and algebraic semantics

As preliminaries, we discuss involutive extensions of

the fixpointed mianorm-based logics introduced in Yang

(2020b) and their algebraic semantics. We base these

logics on a countable propositional language, which has

Fm, a set of formulas, being inductively built from VAR,

a set of propositional variables, binary connectives ,∨

, &, , , and constants∧ → ⇝ F, T, t, f, with defined

connectives: :=￢α α → f, ~ :=α α ⇝ f, :=α ↔ β

( ) ( ),α → β ∧ β → α αt := α ∧ t,
n

:= & (α α α
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& & ( & ) )),… α α … n factors; and α
n
:= (( ( &… α

) & & ) & ,α … α α n factors.

Definition 2.1 (i) (Yang 2016; 2017a) The following

are axiom schemes and rules for MIAL.:

( ) , ( ) ;α ∧ β → α α ∧ β → β

(( ) ( )) ( ( ));α→β ∧ α→γ → α→ β∧γ

( ), ( );α → α ∨ β β → α ∨ β

(( ) ( )) (( ) );α→γ ∧ β→γ → α∨β →γ

F ; (→ α t ) ; (→ α ↔ α αt & βt) ( );→ α ∧ β

( ( & )); ( ( & ));α → β → β α α → β α β⇝

( & ( & ( ( )))) ;β α α → β → γ → γ

(( & ( ( ))) & ) ;α α β → γ β → γ⇝

(( ( & ( )))&( )) ( );α → α α → β β → γ → α → γ

(( (( ) & ))) & ( )) ( );α α β α β → γ → α γ⇝ ⇝ ⇝

( )α→β t (( & ) ( &( &( )∨ δ ε → δ ε β→α t))) (PLa ,δ ε);

( )α→β t (( & ) (( &( )∨ δ ε → δ β→α t)& )) (PLa'ε ,δ ε);

( )α→β t ( ( (( & )&( )∨ δ→ ε→ ε δ β→α t))) (PLb ,δ ε);

( )α→β t ( ( (( & )&( )∨ δ→ ε ε δ β→α⇝ t))) (PLb' ,δ ε);

, ;α → β α β α α⊢ ⊢ t;

( & ) ( & ( & ));α δ ε → δ ε α⊢

( & ) (( & ) & );α δ ε → δ α ε⊢

( (( & ) & ));α δ → ε → ε δ α⊢

( (( & ) & )).α δ → ε δ ε α⊢ ⇝

IMIAL, the involutive MIAL, is MIAL plus

~ (double negation elimination, DNE(1));￢α → α

￢~ (DNE(2)).α → α
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FIMIAL, the fixpointed IMIAL. is IMIAL plus t ↔ f

(F).

(ii) Consider the following structural axioms:

(contraction, c) ( & )α → α α

(expansion, p) ( & )α α → α

(left n-contraction, cln)
n-1α ↔ n , 2 nα ≤

(right n-contraction, crn) α
n-1 → αn, 2 n≤

(left n-mingle, ml
n)

n
α ↔

n-1
, 2 nα ≤

(right n-mingle, mr
n) α

n → αn-1, 2 n.≤

FIMIALS, S {⊆ c, p, cln, c
r
n, m

l
n, m

r
n}, is an involutive

fuzzy logic extending FIMIAL.

We henceforth fix S as a subset such that S {⊆ c, p,

cln, c
r
n, m

l
n, m

r
n}.

Definition 2.2 FILs = {FIMIALS: S {⊆ c, p, cln, c
r
n,

ml
n, m

r
n}}

Remark 2.3 By dropping the axiom F from FIMIAL,

we have the system IMIAL introduced in Yang (2017a);

by eliminating the axioms DNE(1) and DNE(2) from

FIMIAL (IMIAL resp), we obtain the system FMIAL

(MIAL resp), see Yang (2020b; 2016). Note that

FMIALS has been introduced in Yang (2020b).

Henceforth, we, for convenience, use the notations,

“~,” “ ,” “ ,” “ ,” “ ,” and “ “ both as￢ → ∨ ∧⇝
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propositional connectives and as algebraic operators.

We next introduce algebraic structures characterizing

FIMIALS FILs. Let x, ~x, and x∈ ￢ t be x f,→ x f,⇝

and x t, respectively.∧

Definition 2.4 (i) (FIMIAL-algebra, Yang (2017a)) A

FIMIAL-algebra is an algebra A = (A, , , t, f, ,⊥ ∨⊤

, *, , ) such that:∧ → ⇝

( ) (A, , , , ) is a bounded lattice.Ⅰ ⊥ ∨ ∧⊤

( ) (A, *, t, f) is a fixpointed unital groupoid.Ⅱ

( ) for all x, y, z A, x * y z iff y x z iffⅢ ∈ ≤ ≤ →

x y z (residuation).≤ ⇝

(IV) for all x, y, z, w A,∈

t (x y)≤ →∙ t ((z*w) (z*(w*(y x)∨ → → t))) (PLa ,δ ε
A
)

t (x y)≤ →∙ t ((z*w) ((z*(y x)∨ → → t)*w)) (PLa' ,δ ε
A
)

t (x y)≤ →∙ t (z (w ((w*z)*(y x)∨ → → → t))) (PLb ,δ ε
A)

t (x y)≤ →∙ t (z (w ((w*z)*(y x)∨ → →⇝ t))) (PLb' ,δ ε
A
).

(V) ~ x = x (DNE(1)￢ A), ~x = x (DNE(2)￢ A).

(ii) (FIMIALS-algebras) The following are the

inequations for the axioms introduced in Definition 2.1

(ii): for all x A,∈

x x * x (≤∙ cA); x * x x (≤∙ pA)

∙ n-1x ≤ nx, 2 n, (≤ cln
A); x∙ n-1 x≤ n, 2 n, (≤ crn

A);

∙
n
x ≤

n-1
x, 2 n, (≤ ml

n
A
); x∙

n
x≤
n-1
, 2 n, (≤ mr

n
A
).

FIMIALS-algebras, S {⊆ cA, pA, cln
A, crn

A, ml
n
A, mr

n
A},

are defined along with corresponding inequations.
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We call a FIMIALS-algebra linearly ordered if x y≤

or y x for each pair x, y. We define an A-valuation≤

as a map v : Fm A such that→ v(⋕(α1, ,… αn)) = ⋕
A(v(α1), ,… v(αn)), where ⋕ { , , &, , ,∈ → ∧ ∨⇝ T,

F, t, f} and ⋕A
{ , , *, , , , , t, f}. We∈ → ∧ ∨ ⊥⇝ ⊤

say that a formula isα valid in A in case t ≤ v( )α

for all A-valuation v and that an A-valuation v is an

A-model of T in case t ≤ v( ) for all T.α α ∈

Theorem 2.5 (Completeness) Let T be a theory over

FIMIALS FILs and a formula. T∈ α ⊢FIMIALS iff forα

all linearly ordered FIMIALS-algebras A and an

A-valuation v, if v is an A-model of T, then t ≤ v

( ).α

Proof: This claim is a corollary of Theorem 3.1.8 in

Cintula & Noguera (2011). □

3. Involutive fmianorms and their examples

In this section, by 0, 1, ℇ and ℈, we denote , ,⊥ ⊤

identity t, and any f, respectively, on the real unit

interval [0, 1]. We first note that standard

FIMIALS-algebras are FIMIALS-algebras over the real

unit interval [0, 1].

Definition 3.1 (i) (Mianorm, Yang (2016)) A mianorm
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is a map : [0, 1]○
2

[0, 1] such that for all x, y,→

z [0, 1] and for some [0, 1]:∈ ∈ℇ

x = x = x (identity), and○ ○∙ ℇ ℇ

if x y, then x z y z and z x z y≤ ○ ≤ ○ ○ ≤ ○∙

(monotonicity).

(ii) (Fixpointed mianorm, Yang (2020b)) A fixpointed

mianorm (fmianorm for short) is a mianorm with =℈

.ℇ

(iii) (Yang (2020b)) S-fmianorms, S {⊆ cA, pA, cln
A,

crn
A
, ml

n
A
, mr

n
A
}, are defined, along with their

corresponding inequations.

(iv) (FIMIALS-mianorm) Involutive S-fmianorms are

S-fmianorms satisfying (DNE(1)A) and (DNE(2)A).

We call these fmianorms FIMIALS-mianorms.

A mianorm is called○ conjunctive if 0 1 = 1 0○ ○

= 0.

Note that an involutive pair of negations ( , ~) is￢

called cyclic if x = ~x for all x in [0, 1].￢ A

residuated pair of implications (\, /) is involutive if it

further satisfies (DNE(1)
A
) and (DNE(2)

A
). Note also

that the operator * of any standard IMIAL-algebra is a

conjunctive mianorm with identity ℇ and involutively

residuated pair of implications (\, /); conversely, any

involutively residuated mianorm gives rise to an

IMIAL-algebra.

For a cyclic involutive negation and fixpointed￢
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identity (= )) (0, 1), we introduce some￢ ∈ℇ ℇ

examples of FIMIALS-mianorms.

Example 3.2 Let be a cyclic involutive negation and￢

identity (= )) (0, 1).￢ ∈ℇ ℇ

(i) A conjunctive fmianorm ○1 and its involutively

residuated pair (\1, /1) are given by:

x ○1 y = max(0, x+y ) if y x and x, y ;≤ ￢ ≤–ℇ ℇ

min(x, y) if y x and x y or y = 0;≤ ￢ ≤

if y x and otherwise;≤ ￢ℇ

min(1, x+y )–ℇ if y > x and x, y;￢ ≤ℇ

max(x, y) otherwise,

x \1 y = ( y￢ ￢ ○1 x), y /1 x = (x￢ ○1 y).￢

(ii) A conjunctive contractive fmianorm ○2 and its

involutively residuated pair (\2, /2) are given by:

x ○2 y = min(x,y) if y x and x or y = 0;≤ ￢ ≤ ℇ

if y x and otherwise;≤ ￢ℇ

min(1, x+y )–ℇ if y > x and x, y;￢ ≤ℇ

max(x, y) otherwise,

x \2 y = ( y￢ ￢ ○2 x), y /2 x = (x￢ ○2 y).￢

(iii) A conjunctive expansive fmianorm ○3 and its

involutively residuated pair (\3, /3) are given by:
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x ○3 y = max(0, x+y )–ℇ if y x and x, y ;≤￢ ≤ ℇ

min(x,y) if y x and x y or y = 0;≤￢ ≤

ℇ if y x and otherwise;≤ ￢

max(x, y) otherwise,

x \3 y = ( y￢ ￢ ○3 x), y /3 x = (x￢ ○3 y).￢

(iv) A conjunctive right (left) 3-contractive fmianorm

○4 and its involutively residuated pair (\4, /4) are given

by:

x ○4 y = 0 if y x and x, y ;≤ ￢ ≤ ℇ

min(x, y) if y x and x y or y = 0;≤ ￢ ≤

ℇ if y x and otherwise;≤ ￢

max(x, y) otherwise,

x \4 y = ( y￢ ￢ ○4 x), y /4 x = (x￢ ○4 y).￢

(v) A conjunctive right (left) 3-mingle fmianorm ○5

and its involutively residuated pair (\5, /5) are given by:

x ○5 y = min(x, y) if y x and x or y = 0;≤￢ ≤ℇ

ℇ if y x and otherwise;≤ ￢

1 if y > x and < x, y;￢ ℇ

max(x, y) otherwise,

x \5 y = ( y￢ ￢ ○5 x), y /5 x = (x￢ ○5 y).￢

4. Standard completeness
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Here we provide standard completeness for FIMIALS

FILs via a model-theoretic construction introduced in∈

Yang (2017a; 2017b). For convenience, we add the

‘less than or equal to’ relation symbol “ ” to such≤

algebras.

Theorem 4.1 (Yang (2020b)) For every finite or

countable linearly ordered FMIALS-algebra A = (A, ≤

A, , , f, t, , , *, , ), we can build a countable⊥ ∨ ∧ →⊤ ⇝

ordered set U, a binary operation , and a map○ h from

A into U such that the following conditions hold:

( ) U is densely ordered, and has a minimum Min, aⅠ

maximum Max, and special elements , .ℇ ℈

( ) (U, , , , ) is a linearly ordered, monotonic,Ⅱ ○ 󰀃 ℇ ℈

unital fixpointed groupoid.

( ) is conjunctive and left-continuous.Ⅲ ○

(IV) h is an embedding function of the algebra (A, ≤A,

, , f, t, , , *) into (U, , Min, Max, , ,⊥ ∨ ∧⊤ 󰀃 ℈ ℇ

max, min, ), and for all k, l A,○ ∈ h(k l) and→ h(k

l) are the residuated pair of⇝ h(k) and h(l) in (U,

, Min, Max, , , max, min, ).○󰀃 ℈ ℇ

(V) satisfies structural properties corresponding to○

those of *.

Lemma 4.2 For every finite or countable linearly

ordered FIMIALS-algebra A = (A, ≤A, , , f, t, ,⊥ ∨⊤

, *, , ), we can build a countable ordered set U, a∧ → ⇝
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binary operation , and a function○ h from A into U

such that the conditions (I) to (V) in Theorem 4.1 and

the following condition hold:

(V ) For all x U, x satisfies (DNE(1)Ⅰ ∈ A) and

(DNE(2)
A
).

Proof: For convenience, let us suppose that A is a

subset of Q [0, 1] having a finite or countable∩

number of elements, where 1 and 0 are greatest and

least elements, respectively. First notice that, for

FMIALS, a monotonic linearly ordered unital fixpointed

groupoid (U, , , , ) is defined as follows:○ 󰀃 ℇ ℈

U = {(0, 0)} {(k,x): k A {0 (= )} and x∪ ∈ ⊥∖

∈ Q (0,k]};∩

for (k, x), (l, y) U,∈

(k, x) (l, y) iff either k <󰀃 A l, or k =A l and x y;≤

for FMIAL and FMIALA, A {∈ c, cln, c
r
n, where 2≤n},

(k,x) ○U1 (l,y) = max{(k,x),(l,y)} if k*l = k l, k∨ ≠Al,

and (k,x) or (l,y) ;󰀃 ℇ 󰀃 ℇ

min{(k,x),(l,y)} if k*l = k z, and∧

(k, x) or (l, y) ;󰀃 ℇ 󰀃 ℇ

(k*l, k*l) otherwise, and
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for FMIALB, B {∈ pn, m
l
2, m

r
2},

(k,x) ○U2 (l,y) = max{(k,x),(l,y)} if k*l = k l, and∨

(k,x) or (l,y) ;≻ ℇ ≻ ℇ

min{(k,x),(l,y)} if k*l = k l, and∧

(k,x) or (l,y) ;󰀃 ℇ 󰀃 ℇ

(k*l, k*l) otherwise.

For convenience, we henceforth delete the index A in

≤A and =A, in case we do not have to distinguish them.

Next notice that, for FIMIALB, k+ denotes the

successor of k if it exists, otherwise k
+
= k, for each k

A. Define k := k and ~k := / k. Then, the∈ ￢ ∖ ℈ ℈

pair of negations ( , ~) in A is involutive. Hence, we￢

have that: k = ( l)￢
+
iff l = ( k)￢

+
and k = (~l)

+
iff l

= (~k)+; moreover, if k < k+, then ( (k￢ +))+ = k and￢

(~(k
+
))

+
= ~k. Here, we use V below in place of the

U above. Let (V, ) be the linearly ordered set,󰀃

defined by

V = {(k, k): k A}∈ ∪

{(k, x): k' A such that k = k'∃ ∈ + > k', and x Q∈ ∩

(0, k)},

and being the corresponding lexicographic ordering󰀃

as above. Then, it suffices to check the condition (VI).

Now, we define new operations ⊛V1 on V, based on
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○U1, and ⊛V2 on V, based on ○U2, as follows:3)

(k,x) (l,y) = min{ ,(k,x) (l,y)}○⊛ ℈

if k=( l)￢ + and a/b+a’/b’ 1, where x = ka/b≤

and y=la’/b’, or k < ( l)￢
+
; or

if k=(~l)+ and a/b+a’/b’ 1, where x = ka/b and≤

y=la’/b’, or k < (~l)+; or

(k,x) (l,y) otherwise.○

Note that ⊛V1 is for FIMIAL and FIMIALA, A {∈ c, cln,

crn, where 2 ≤ n} and ⊛V2 is for FIMIALB, B {∈ p,

ml
2, m

r
2},

For conditions (I), (II), (III), (IV), (VI), and (FA),

see Proposition 2 in Yang (2017a) and Proposition 3.2

in Yang (2017b). Hence, we need to consider the

condition (V). For the conditions for FIMIALc and

FIMIALp, see Proposition 3.2 in Yang (2017b) and

Theorem 4 in Yang (2017a). For the other conditions

for FIMIALc
r
n, FIMIALc

l
n, FIMIALm

r
n, and FIMIALm

l
n, see

Proposition 3 in Yang (2019).

Note that the other logics are obtained by combining

some of the structural axioms c, p, cln, c
r
n, m

l
n, and mr

n.

We can similarly prove additional properties. As an

example, we consider FIMIALc
r
2m

r
3, which has ⊛V1. For

FIMIALc
r
2m

r
3, we need to further prove right 3-mingle

3) This definition was introduced in Yang (2017a). For convenience,

we drop the indices V1 and V2 whenever we do not have to

distinguish them.
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and 2-contractive property for (k, x) U. Note that it∈

forms right n-potency, i.e., (k, x)n = (k, x)n-1, for 3 ≤

n, and the right n-potency was proved in Yang

(2020a). Thus, it suffices to show that (k, x) (k, x)󰀃 2

and (k, x)
3
= (k, x)

2
.

Case 1. k = (~k)+ and 2a/b 1, where x = ka/b, or≤

k < (~k)+.

Subcase 1.1. k = k
2
. Since t < k is not the case, we

have k = k2 t = f < (~k)≤ + and thus (k, x) ⊛V1 (k,

x) = min{ , (k, x) ○℈ V1 (k, x)} = (k, x) ○V1 (k, x) =

(k, x); therefore, (k, x) (k, x)󰀃 2. Moreover, since (k,

x) ⊛V1 (k, x) = (k, x) ○V1 (k, x) = (k, x)
2
○V1 (k, x)

= (k, x)2 ⊛V1 (k, x), we further have that (k, x)2 =

(k, x)
3
.

Subcase 1.2. k k≠
2
. This cannot be the case since

the condition implies that k2 < k < t, which contradicts

the supposition that k is right 2-contractive, i.e., k ≤

k2.

Case 2. k = ( k)￢
+
and 2a/b 1, where x = ka/b, or≤

k < ( k)￢ +. The proof is similar to that of Case 1.

Case 3. Otherwise. The proof reduces to that of the

right 3-mingle and 2-contractive property for

FMIALc
r
2m

r
3, which is proved in Proposition 4.2 in Yang

(2020b). □

Lemma 4.3 Every countable linearly ordered

FIMIALS-algebra can be embedded into a standard
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FIMIALS-algebra.

Proof: Let V, A, etc. be as in Lemma 4.2. Since (V,

) is a linearly-ordered countable, dense set with󰀃

minimum and maximum, it is order isomorphic to ([0,

1] ∩ Q, ). We take g as such an isomorphism. If (I)≤

to (VI) hold true, letting for a, b [0, 1], a ´ b =∈ ⊛

g(g
-1
(a) g⊛

-1
(b)), and, for all k A, h´(k) =∈

g(h(k)), we have that [0, 1] ∩ Q, , 0, 1, , , ´,≤ ℇ ℈ ⊛

h´ satisfy the conditions (I) to (VI) whenever V, ,󰀃

Max, Min, , , , and h do. This means that we canℇ ℈ ⊛

assume that V = [0, 1] ∩ Q and = , without loss≤󰀃

of generality.

For a, b [0, 1], let us define as follows,∈ ＂⊛

a b = sup＂⊛ x U:x a∈ ≤ supy U:y b∈ ≤ x y.⊛

By this definition, we can easily show that it satisfies

monotonicity, identity, fixpoint, and idempotence.

Furthermore, it follows from the definition that is＂⊛

conjunctive, i.e., 0 1 = 0. The left-continuity of＂⊛ ⊛

can be proved as in Proposition 2 in Yang (2017a).＂

For the other structural properties of , here as＂⊛

an example we prove the right 3-mingle and

2-contractive property as in Lemma 4.2. Suppose that

in the unit interval <xi : i N> is an increasing∈

sequence of reals, where sup{xi : i N} = x. Then,∈
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we obtain that x
n-1

= sup{a
n-1

: a ∈ [0, 1] Q, a∩ ≤

x} and xn = sup{an : a ∈ [0, 1] Q, a x}. For the∩ ≤

right 3-mingle and 2-contractive property of , we＂⊛

need to show that x x≤ 2 and x3 = x2. Since a a≤ 2,

we have that sup{a : a ∈ [0, 1] Q, a x}∩ ≤ ≤

sup{a2 : a ∈ [0, 1] Q, a x}. Thus, we get that x∩ ≤

x≤ 2. Similarly, since x3 = x2, we obtain that sup{a3 :

a ∈ [0, 1] Q, a x} = sup{a∩ ≤
2
: a ∈ [0, 1] Q, a∩

x}; therefore, x≤ 3 = x2.

As an easy consequence of the definition, we have

that extends . By (I) to (VI) of Lemma 4.2,＂⊛ ⊛ h is

an embedding function of (A, ≤A, , , t, f, , , *)⊥ ∧ ∨⊤

into ([0, 1], , 1, 0, , , min, max, ). Moreover,≤ ＂ℇ ℈ ⊛

has a residuated pair of implications, calling it ( ,＂⊛ ⇀

).⇁

Finally we prove that for x, y A,∈ h(x y) =∖ h(x)

⇀ h(y) and h(y / x) = h(x) ⇁ h(y). By (IV), h(x ∖

y) and h(y / x) are the residuated pair of implications

of h(x) and h(y) in ([0, 1] Q, , 1, 0, , , min,∩ 󰀃 ℇ ℈

max, ). Thus⊛

h(x) ＂⊛ h(x y) =∖ h(x) ⊛ h(x y) ≤∖ h(y), and

h(y / x) ＂⊛ h(x) = h(y / x) ⊛ h(x) ≤ h(y).

For the first case, suppose toward contradiction that

there is a > h(x y) such that∖ h(x) a h(y).＂ ≤⊛

Since [0, 1] Q is dense in [0, 1], there is q∩ ∈ [0,
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1] Q such that∩ h(x y) < q a. Hence≤∖ h(x) ＂⊛

q = h(x) q ≤⊛ h(y), contradicting the condition (IV).

The proof for the second is analogous. □

Theorem 4.4 (Strong standard completeness) For

FIMIALS, S {⊆ c, p, cln, c
r
n, m

l
n, m

r
n}, the following are

equivalent:

(1) T ⊢FIMIALS .α

(2) For every standard FIMIALS-algebra and

evaluation v, if v( ) for all T, thenβ ≥ β ∈ℇ v( )α ≥

.ℇ

Proof: The (1)-to-(2) direction is easy. For the

(2)-to-(1) direction, let be a formula such that Tα

⊬FIMIALS ,α A a linearly ordered FIMIALS-algebra, and

v an evaluation in A such that v( ) t for all Tβ ≥ β ∈

and v( ) < t. Letα h´ be the embedding function of A

into the standard FIMIALS-algebra as in proof of

Lemma 4.3. Then, h´ ⊛ v is an evaluation into the

standard FIMIALS-algebra such that h´ ⊛ v( )β ≥ ℇ

and yet h´ ⊛ v( ) < .α □ℇ

5. Concluding remark

We investigated involutive extensions of fixpoint

mianorm-based logics. After introducing their some
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examples, we provided standard completeness results

for unknown such logics via Yang’s construction. Note,

however, that this construction does not work for

involutive extensions of mianorm-based logics, i.e.,

non-fixpointed involutive extensions (see Yang

(2017b)). To introduce such semantics for

non-fixpointed involutive extensions remains a problem.
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고정점을 갖는 미아놈 논리의 누승적 확장

최근 고정점을 갖는 미아놈 논리가 연구되었다 이 논문은.

그러한 논리를 누승적인 논리로 확장한다 이를 위하여 먼저.

고정점을 갖는 누승적 미아놈 논리와 그러한 논리의 대수적

의미론을 소개한다 다음으로 고정점을 갖는 누승적 미아놈의.

몇몇 예를 소개한다 마지막으로 누승적 논리 체계들이 표준적.

으로 완전하다는 것 즉 단위 실수 에서 완전하다는 것을[0, 1]

보인다.

주요어 누승 준구조 논리 퍼지 논리 고정점 미아놈: , , , , .


