Set-Theoretical Kripke-Style Semantics for an Extension of HpsUL, CnHpsUL**

Eunsuk Yang

[Abstract] This paper deals with non-algebraic Kripke-style semantics, i.e, set-theoretical Kripke-style semantics, for weakening-free *non-commutative* fuzzy logics. We first recall an extension of the pseudo-uninorm based fuzzy logic HpsUL, CnHpsUL*. We next introduce set-theoretical Kripke-style semantics for it.

[Key Words] (Set-theoretical) Kripke-style semantics, Algebraic semantics, Fuzzy logic, HpsUL, CnHpsUL*.

Received: Nov. 21, 2017. Revised: Jan. 29, 2018. Accepted: Jan. 5, 2018.

^{*} This research was supported by "Research Base Construction Fund Support Program" funded by Chonbuk National University in 2017. I must thank the referees for their helpful comments.

1. Introduction

The aim of this paper is to introduce set-theoretic Kripke-style semantics for weakening-free non-commutative substructural fuzzy logic. For this, note that Yang recently introduced two kinds of (binary) Kripke-style semantics, i.e., algebraic and non-algebraic Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and de Morgan (briefly, dM) negations in Yang (2015b). He (2014b, 2015a) further considered such semantics for logics with weak-Boolean (briefly, wB) negations, which can be regarded as paraconsistent logics. Recently, he (2016) introduced algebraic Kripke-style semantics for a weakening-free non-commutative substructural fuzzy logic, CnHpsUL*. But he did not consider set-theoretical semantics for it. Thus, it is not clear whether this semantics works for weakening-free non-commutative substructural fuzzy logic systems.

This is a tough question because Kripke-style semantics for well-known core fuzzy systems are algebraic, but not set-theoretical. Recall some historical facts associated with this. As Yang mentioned in Yang (2014a), after introducing algebraic semantics for t-norm¹⁾ (based) logics, their corresponding algebraic Kripke-style semantics have been introduced: after Esteva and Godo introducing algebraic semantics for monoidal t-norm (based) logics in Esteva & Godo (2001), their corresponding algebraic Kripke-style semantics were introduced in Montagna & Ono

¹⁾ T-norms are commutative, associative, increasing, binary functions with identity 1 on the real unit interval [0,1].

(2002), Montagna & Sacchetti (2003; 2004), and Diaconescu & Georgescu (2007).Furthermore. algebraic semantics corresponding algebraic Kripke-style semantics for core fuzzy logic systems based on more general structures have been introduced: after Hájek introducing algebraic semantics for non-commutative pseudo-t-norm (based) logics in Hájek (2003a; 2003b), corresponding algebraic Kripke-style semantics the pseudo-t-norm (based) logic psMTL^r was introduced in Diaconescu (2010). After Metcalfe and Montagna introducing algebraic semantics for weakening-free uninorm (based) logics in Metcalfe & Montagna (2007), their corresponding algebraic Kripke-style semantics were introduced in Yang (2012; 2014a). After Wang (2013) introducing algebraic semantics for CnHpsUL*, the HpsUL* with n-potency, its corresponding algebraic Kripke-style semantics was introduced in Yang (2016).

Then, these facts raise the following interesting question:

● Can we introduce set-theoretical Kripke-style semantics for core fuzzy systems, in particular CnHpsUL*?

The answer to the question is positive in the sense that we can provide such Kripke-style semantics for CnHpsUL*. For this, first, in Section 2 we recall the system CnHpsUL*. In Section 3, we introduce the other kind of binary relational Kripke-style semantics, non-algebraic set-theoretical Kripke-style semantics, for CnHpsUL*.

For convenience, we shall adopt the notation and terminology

42 Eunsuk Yang

similar to those in Cintula (2006), Metcalfe & Montagna (2007), Montagna & Sacchetti (2003; 2004), and Yang (2012; 2014a; 2016), and we assume reader familiarity with them (along with results found therein).

2. Preliminaries: The logic CnHpsUL*

We base CnHpsUL* on a countable propositional language with formulas Fm built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow , \ddagger , &, \land , \lor , and constants T, F, t2), with a defined connective:

dfl.
$$\phi \leftrightarrow \psi := (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$
.

We moreover define φ^n_t as φ_t & \cdots & φ_t , n factors, where φ_t := φ \wedge t. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

Definition 2.1 (i) (Metcalfe et al. (2009), Tsinakis & Blount (2003), Wang (& Zhao) (2009; 2013)) **HpsUL** consists of the following axiom schemes and rules:

A1.
$$\phi \rightarrow \phi$$
 (self-implication, SI)

A2.
$$(\phi \land \psi) \rightarrow \phi$$
, $(\phi \land \psi) \rightarrow \psi$ (\land -elimination, \land -E)

A3.
$$((\phi \rightarrow \psi) \land (\phi \rightarrow \chi)) \rightarrow (\phi \rightarrow (\psi \land \chi))$$
 (\land -introduction, \land -I)

A4.
$$\phi \rightarrow (\phi \lor \psi)$$
, $\psi \rightarrow (\phi \lor \psi)$ (\lor -introduction, \lor -I)

²⁾ The constant t corresponds to the least designated element.

A5.
$$((\phi \rightarrow \chi) \land (\psi \rightarrow \chi)) \rightarrow ((\phi \lor \psi) \rightarrow \chi)$$
 (\lor -elimination, \lor -E)

A6. $\phi \rightarrow T$ (verum ex quolibet, VE)

A7. $\mathbf{F} \rightarrow \phi$ (ex falso quadlibet, EF)

A8. \mathbf{t}

A9. $\phi \rightarrow (\mathbf{t} \rightarrow \phi)$

A10. $(\psi \rightarrow \chi) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$ (prefixing, PF)

A11. $\phi \rightarrow ((\phi \ddagger \psi) \rightarrow \psi)$

A12. $(\phi \ddagger (\psi \rightarrow \chi)) \rightarrow (\psi \rightarrow (\phi \ddagger \chi))$

A13. $\psi \rightarrow (\phi \rightarrow (\phi \& \psi))$

A14. $(\psi \rightarrow (\phi \rightarrow \chi)) \rightarrow ((\phi \& \psi) \rightarrow \chi)$

A15. $((\psi \ddagger \psi) \& (\psi \rightarrow \phi)) \rightarrow (\psi \ddagger \phi)$

A16. $(\phi_t \& \psi_t) \rightarrow (\phi \land \psi)$

A17. $(\phi \lor \psi)_t \rightarrow (\phi_t \lor \psi_t)$ (prelinearity, PRL1)

A18. $(\chi \rightarrow (((\phi \lor \psi) \rightarrow \phi) \& \chi)) \lor (\chi \ddagger (\chi \& ((\phi \lor \psi) \rightarrow \psi)))$ (PRL2)

 $\phi \rightarrow \psi$, $\phi \vdash \psi$ (mp)

 $\phi \vdash \phi_t$ (adj_t)

 $\phi \vdash \psi \rightarrow (\phi \& \psi)$ (pn \rightarrow)

 $\phi \vdash \psi \Rightarrow (\phi \& \psi)$ (pn \rightarrow)

 $\phi \vdash \psi \Rightarrow (\phi \& \psi)$ (pn \rightarrow)

 $2 \leq n$ (n-potency, nP). (iii) (Wang (2013)) CnHpsUL* is CnHpsUL plus ($\phi \& \psi$) \rightarrow $\mathbf{t} \vdash (\psi \& \Phi) \rightarrow \mathbf{t}^{3}$ (weak commutativity, WCM).

(ii) (Wang (2013)) CnHpsUL is HpsUL plus $\phi^n \leftrightarrow \phi^{n-1}$, for

Proposition 2.2 (Cintula, Horčík, & Noguera (2013), Yang (2016)) CnHpsUL* proves:

(1)
$$\phi \rightarrow \psi \vdash \phi \ddagger \psi, \phi \ddagger \psi \vdash \phi \rightarrow \psi$$

³⁾ Note that we may instead take $(\phi \ddagger t) \rightarrow (\phi \ddagger t)$

(2)
$$\phi \rightarrow (\psi \rightarrow \chi) \vdash (\psi \& \phi) \rightarrow \chi$$
 (residuation1, Res1)

(3)
$$\phi \rightarrow (\psi \downarrow \chi) \vdash (\phi \& \psi) \rightarrow \chi (Res1_{\pm})$$

(4)
$$(\psi \& \varphi) \rightarrow \chi \vdash \varphi \rightarrow (\psi \rightarrow \chi)$$
 (Res2)

(5)
$$(\phi \& \psi) \rightarrow \chi \vdash \phi \rightarrow (\psi \ddagger \chi) (Res2_{\ddagger})$$

(7)
$$(t \& \varphi) \leftrightarrow \varphi \leftrightarrow (\varphi \& t)$$

(8)
$$(\phi \& (\phi \rightarrow \psi)) \rightarrow \psi$$
.

A theory over $CnHpsUL^*$ is a set T of formulas. A proof in a sequence of formulas whose each member is either an axiom of $CnHpsUL^*$ or a member of T or follows from some preceding members of the sequence using the two rules in Definition 2.1. T $\vdash \varphi$, more exactly T $\vdash_{CnHpsUL^*} \varphi$, means that φ is provable in T with respect to (w.r.t.) $CnHpsUL^*$, i.e., there is a $CnHpsUL^*$ -proof of φ in T.

The deduction theorem for CnHpsUL* is following:

Definition 2.3 (Cintula & Noguera (2011)) Let T be a theory over CnHpsUL*, and φ , ψ formulas. L is almost (MP)-based with the set of basic deduction terms $\{\lambda_{\alpha}(\bigstar),\ \rho_{\alpha}(\bigstar):\alpha\in Fm\}$. Therefore, the following holds:

T, $\phi \vdash_L \psi$ if and only if (iff) $T \vdash \chi(\phi) \rightarrow \psi$ for some conjunction χ of iterated conjugates⁴).

A theory T is *inconsistent* if $T \vdash F$; otherwise it is *consistent*.

⁴⁾ For the notion of conjugate, see Cintula & Noguera (2011) and Yang (2016).

3. Kripke-style semantics for CnHpsUL*

We consider here set-theoretical Kripke-style semantics for CnHpsUL*.

Definition 3.1 (Yang (2016))

- (i) (Operational Kripke frame) An operational Kripke frame is a structure $X = (X, \top, \bot, t, f, \le, *)$ such that $(X, \top, \bot, t,$ $f, \leq, *$) is a linearly ordered pointed bounded monoid. The elements of X are called *nodes*.
- (ii) (Residuated operational Kripke frame) An operational Kripke frame is said to be residuated if it has suprema w.r.t. *, i.e., for every x, $y \in X$, the sets $\{z: x * z \le y\}$ and $\{z: z\}$ * $x \le y$ have suprema.
- (iii) (CnHpsUL* frame) A CnHpsUL* frame is a residuated operational Kripke frame, where * is conjunctive (i.e., \bot * \top = \perp) and left-continuous (i.e., whenever sup $\{x_i : i \in I\}$ exists, $x * \sup\{x_i : i \in I\} = \sup\{x * x_i : i \in I\}$) and $\sup\{x_i : i \in I\}$ I} * $x = \sup\{x_i * x : i \in I\}$).

Definition 3.2 ensures that a CnHpsUL* frame has suprema w.r.t. *, i.e., for every x, $y \in X$, the sets $\{z: x * z \leq y\}$ and $\{z: z * x \le y\}$ have the suprema. X is said to be *complete* if \leq is a complete order.

An evaluation or forcing on an algebraic Kripke frame is a relation | between nodes and propositional variables, and arbitrary formulas subject to the conditions below: for every

propositional variable p,

(AHC) if
$$x \Vdash p$$
 and $y \le x$, then $y \Vdash p$;
(min) $\bot \Vdash p$; and

for arbitrary formulas,

- (t) $x \Vdash t \text{ iff } x \leq t;$
- (f) $x \Vdash f$ iff $x \leq f$;
- (\bot) $x \Vdash F \text{ iff } x = \bot;$
- (\land) $x \Vdash \varphi \land \psi$ iff $x \Vdash \varphi$ and $x \Vdash \psi$;
- (\vee) $x \Vdash \varphi \lor \psi$ iff $x \Vdash \varphi$ or $x \Vdash \psi$;
- (&) $x \Vdash \varphi$ & ψ iff there are $y, z \in X$ such that $y \Vdash \varphi,$ $z \Vdash \psi,$ and $x \leq y * z;$
- $(\rightarrow) \quad x \; \Vdash \; \varphi \to \psi \; \text{iff for all} \; y \; \in \; X, \; \text{if} \; y \; \Vdash \; \varphi, \; \text{then} \; y \; * \; x \\ \Vdash \; \psi;$
- $(\ \ \ \ \) \quad x \ \Vdash \ \varphi \ \ \ \ \psi \ \ \text{iff for all} \ \ y \ \subseteq \ X, \ \text{if} \ \ y \ \Vdash \ \varphi, \ \text{then} \ \ x \ \ \ y \\ \Vdash \ \ \psi.$

An evaluation or forcing on a CnHpsUL* frame is an evaluation or forcing further satisfying that (max) for every atomic sentence p, $\{x : x \Vdash p\}$ has a maximum.

Definition 3.2 (Yang (2016))

(i) (Residuated operational Kripke model) A residuated operational is a pair (X, \Vdash) , where X is a residuated operational Kripke frame and \Vdash is a forcing on X.

(ii) (CnHpsUL* model) A CnHpsUL* model is a pair (X, \Vdash) , where X is a CnHpsUL* frame and \Vdash is a forcing on X. A CnHpsUL* model (X, \Vdash) is said to be *complete* if X is a complete frame and \Vdash is a forcing on X.

Definition 3.3 (Cf. Montagna & Sacchetti (2004)) Given a residuated operational Kripke model (X, \Vdash) , a node x of X and a formula φ , we say that x forces φ to express $x \Vdash \varphi$. We say that φ is true in (X, \Vdash) if $t \Vdash \varphi$, and that φ is valid in the frame X (expressed by X models φ) if φ is true in (X, \Vdash) for every forcing \Vdash on X.

Definition 3.4 A residuated operational Kripke frame X is a $CnHpsUL^*$ frame iff all axioms of $CnHpsUL^*$ are valid in X. We say that a $CnHpsUL^*$ model (X, \Vdash) is a $CnHpsUL^*$ model if X is a $CnHpsUL^*$ frame.

For soundness and completeness for CnHpsUL*, let $\vdash_{CnHpsUL^*}$ φ be the theoremhood of φ in CnHpsUL*.

Proposition 3.5 (Soundness, Yang (2016)) If $\vdash_{CnHpsUL^*} \varphi$, then φ is valid in every CnHpsUL* frame.

Now we provide completeness results for $CnHpsUL^*$ using set-theoretical Kripke-style semantics. A theory T is said to be *linear* if, for each pair φ , ψ of formulas, we have $T \vdash \varphi \rightarrow \psi$ or $T \vdash \psi \rightarrow \varphi$. By a $CnHpsUL^*$ -theory, we mean a theory T

closed under rules of CnHpsUL*. As in relevance logic, by a regular CnHpsUL*-theory, we mean a CnHpsUL*-theory containing all of the theorems of CnHpsUL*. Since we have no use of irregular theories, henceforth, by a CnHpsUL*-theory, we henceforth we mean a CnHpsUL*-theory containing all of the theorems of CnHpsUL*.

Moreover, where T is a linear CnHpsUL*-theory, we define the canonical CnHpsUL* frame determined by T to be a structure $X = (X_{can}, \top_{can}, \bot_{can}, t_{can}, t_{can}, f_{can}, \le_{can}, *_{can}), \text{ where } \top_{can} = \{ \varphi : T \}$ $\vdash_{\text{CnHpsUL*}} T \, \rightarrow \, \varphi \}, \ \bot_{\text{can}} \, = \, \{ \varphi \, : \, T \ \vdash_{\text{CnHpsUL*}} F \, \rightarrow \, \varphi \}, \ t_{\text{can}} \, = \, T,$ $f_{can} = \{ \varphi : T \vdash_{CnHpsUL^*} f \rightarrow \varphi \}, X_{can} \text{ is the set of linear}$ CnHpsUL*-theories extending t_{can} , \leq_{can} is \supseteq restricted to X_{can} , i.e, $x \leq_{can} y$ iff $\{ \varphi : x \vdash_{CnHpsUL^*} \varphi \} \supseteq \{ \varphi : y \vdash_{CnHpsUL^*} \varphi \},$ and $*_{can}$ is defined as $x *_{can} y := \{ \varphi \& \psi : \text{ for some } \varphi \in x, \psi \}$ ∈ y} satisfying groupoid properties corresponding to CnHpsUL* frames on $(X_{can}, t_{can}, \leq_{can})$. Note that the base t_{can} is constructed as the linear CnHpsUL*-theory that excludes nontheorems of **CnHpsUL***, i.e., excludes ϕ such that $\nvdash_{\text{CnHpsUL*}} \phi$. The partial orderedness and the linear orderedness of the canonical CnHpsUL* frame depend on \leq_{can} restricted on X_{can} . Then, first, the following is obvious.

Proposition 3.6 A canonical CnHpsUL* frame is linearly ordered.

Proof: It is easy to show that a canonical L frame is partially ordered. We show that this frame is connected and so linearly

ordered. Suppose toward contradiction that neither $x \leq_{can} y$ nor $y \leq_{can} x$. Then, there are φ , ψ such that $\varphi \in y$, $\varphi \not\in x$, $\psi \in x$, and $\psi \not\in y$. Note that, since t_{can} is a linear theory, $\varphi \to \psi \in t_{can}$ or $\psi \to \varphi \in t_{can}$. Let $\varphi \to \psi \in t_{can}$ and thus $\varphi \to \psi \in y$. Then, by (mp), we have $\psi \in y$, a contradiction. The case, where $\psi \to \varphi \in t_{can}$, is analogous. \square

Next, we define a canonical evaluation as follows:

(a)
$$x \vdash_{can} \varphi \text{ iff } \varphi \subseteq x$$
.

This definition allows us to state the following lemmas.

Lemma 3.7 $t_{can} \vdash_{can} \varphi \rightarrow \psi$ iff for all $x \in X_{can}$, if $x \vdash_{can} \varphi$, then $x \vdash_{can} \psi$.

Proof: By (a), we need to show that $\phi \to \psi \in t_{can}$ iff for all $x \in X_{can}$, if $\phi \in x$, then $\psi \in x$. For the left-to-right direction, we assume $\phi \to \psi \in t_{can}$ and $\phi \in x$, and show $\psi \in x$. The definition of $*_{can}$ ensures $\phi \& (\phi \to \psi) \in x *_{can} t_{can} = x$. By Proposition 2.2 (8), we have $(\phi \& (\phi \to \psi)) \to \psi \in t_{can}$ and thus $(\phi \& (\phi \to \psi)) \to \psi \in x$. Therefore, we obtain $\psi \in x$ by (mp). We prove the other direction contrapositively. Suppose $\phi \to \psi \not\in t_{can}$. We set $x_0 = \{Z : \text{there exists } X \in t_{can} \text{ and } t_{can} \vdash (\phi \& X) \to Z\}$. Clearly, $x_0 \supseteq t_{can}$, $\phi \in x_0$, but also $\psi \not\in x_0$. (Otherwise, $t_{can} \vdash (\phi \& X) \to \psi$ and thus $t_{can} \vdash X \to (\phi \to \psi)$; therefore, since $t_{can} \vdash X$, by (mp), we have $t_{can} \vdash X$

50 Eunsuk Yang

 $\phi \rightarrow \psi$, a contradiction.)

Then, by the Linear Extension Property of Theorem 12.9 in Cintula, Horčík, & Noguera (2015), we have a linear theory $x \supseteq x_0$ with $\psi \not \in x$; therefore $\varphi \in x$ but $\psi \not \in x$. \square

Lemma 3.8 (Canonical Evaluation Lemma) \Vdash_{can} is an evaluation.

Proof: We first consider the conditions for propositional variables.

For (AHC), we must show that: for every propositional variable p,

if
$$x \Vdash_{can} p$$
 and $y \leq_{can} x$, then $y \Vdash_{can} p$.

Let $x \Vdash_{can} p$ and $y \le_{can} x$. By (a), we have $p \in x$ and $x \subseteq y$, and thus $p \in y$. Hence, by (a), we have $y \Vdash_{can} p$.

For (min), we must show that: for every propositional variable p,

$$\perp_{can}$$
 \Vdash_{can} p.

By (a), we need to show that $p\in \perp_{can}$. Since $\perp_{can}=\{\varphi: T\vdash_{CnHpsUL^*}F\to \varphi\},\ p\in \perp_{can}$.

We next consider the conditions for propositional constants \mathbf{t} , \mathbf{f} , and \mathbf{F} .

For (t), we must show that:

$$x \Vdash_{can} t \text{ iff } x \leq_{can} t_{can}$$
.

By (a), we need to show that $\mathbf{t} \in x$ iff $x \supseteq t_{can}$. This is obvious since $t_{can} = T$ and x is a theory extending T.

For (f), we must show that:

$$x \Vdash_{can} f \text{ iff } x \leq_{can} f_{can}.$$

By (a), we need to show that $\mathbf{f} \in x$ iff $x \supseteq f_{can}$. This is obvious since $f_{can} = \{ \varphi : T \vdash_{CnHpsUL^*} \mathbf{f} \rightarrow \varphi \}$ and x is a theory extending T.

For (\bot) , we must show that:

$$x \Vdash_{can} F \text{ iff } x =_{can} \bot_{can}$$
.

By (a), we need to show that $\mathbf{F} \in \mathbf{x}$ iff $\mathbf{x} =_{\operatorname{can}} \perp_{\operatorname{can}}$. This is obvious since $\perp_{\operatorname{can}} = \{ \phi : T \vdash_{\operatorname{CnHpsUL}^*} \mathbf{F} \to \phi \}$.

Now we consider the conditions for arbitrary formulas.

For (\land) , we must show

$$x \Vdash_{can} \varphi \land \psi \text{ iff } x \Vdash_{can} \varphi \text{ and } x \Vdash_{can} \psi.$$

By (a), we need to show that $\phi \land \psi \in x$ iff $\phi \in x$ and $\psi \in x$. The left-to-right direction follows from (\land -E) and (mp). The right-to-left direction follows from (adj).

For (\vee) , we must show

$$x \Vdash_{can} \phi \lor \psi \text{ iff } x \Vdash_{can} \phi \text{ or } x \Vdash_{can} \psi.$$

By (a), we need to show that $\phi \lor \psi \in x$ iff $\phi \in x$ or $\psi \in x$. The left-to-right direction follows from the fact that linear theories are also prime theories in **CnHpsUL*** (see Cintula & Noguera (2011)). The right-to-left direction follows from (\lor -I) and (mp).

For (&), we must show

$$x \Vdash_{can} \varphi \ \& \ \psi \ \ \text{iff there are } y, \ z \in X \ \text{such that} \ y \Vdash_{can} \varphi, \ z$$

$$\Vdash_{can} \ \psi, \ \text{and} \ \ x = y \ *_{can} \ z.$$

By (a), we need to show that $\phi \& \psi \in x$ iff there are y, z $\in X$ such that $\phi \in y$, $\psi \in z$, and $x = y *_{can} z$. This directly follows from the definition of $*_{can}$.

For (\rightarrow) , we must show

$$x \Vdash_{can} \varphi \rightarrow \psi$$
 iff for all $y \in X$, if $y \Vdash_{can} \varphi$, then $y *_{can} x \Vdash_{can} \psi$.

By (a), we need to show that $\phi \to \psi \in x$ iff for all $y \in X$, if $\phi \in y$, then $\psi \in y *_{can} x$. For the left-to-right direction, we assume $\phi \to \psi \in x$ and $\phi \in y$, and show $\psi \in y *_{can} x$. The definition of $*_{can}$ ensures $\phi & (\phi \to \psi) \in y *_{can} x$. Then, by Proposition 2.2 (8) and Lemma 3.7, we obtain $\psi \in y *_{can} x$. We prove the right-to-left direction contrapositively. Suppose $\phi \to \psi \not \in x$. We need to construct a linear theory y such that $\phi \in y$

and $\psi \not\in y *_{can} x$. Let y_0 be the smallest regular CnHpsUL*-theory extending t_{can} with $\{\phi\}$ and satisfying $y_0 *_{can} x$ = $\{Z : \text{there is } X \subseteq x \text{ and } t_{can} \vdash (\varphi \& X) \rightarrow Z\}$. Clearly, φ \subseteq y₀, but $\psi \not \in$ y₀ *_{can} x. (Otherwise, t_{can} \vdash (φ & X) $\rightarrow \psi$ and thus $t_{can} \vdash X \rightarrow (\varphi \rightarrow \psi)$ for some $X \subseteq x$; therefore, $\varphi \rightarrow \psi$ \in y₀ *_{can} x, a contradiction.) Then, by the Linear Extension Property, we can obtain a linear theory y such that $y_0 \subseteq y$ and $y *_{can} x = \{Z : there is X \subseteq x and t_{can} \vdash (\varphi \& X) \rightarrow Z\};$ therefore, $\phi \in y$ but $\psi \not\in y *_{can} x$.

For $(\ \ \ \ \ \)$, we must show

 $x \Vdash_{can} \phi \ \ddagger \ \psi \ iff \ for \ all \ y \in X, \ if \ y \Vdash_{can} \phi, \ then \ x *_{can} \ y$ $\Vdash_{can} \psi$.

Its proof is analogous to that for (\rightarrow) . \square

Let us call a model $M_1 = (X_1, \parallel_{can})$ (i.e., $(X_{can}, \top_{can}, \perp_{can}, \perp_{can})$ $t_{can}, \ f_{can}, \ \leq_{can}, \ *_{can}, \ \Vdash_{can})), \ for \ \textbf{CnHpsUL*}, \ a \ CnHpsUL* \ model.$ Then, by Lemma 3.8, the canonically defined (X, \Vdash_{can}) is a CnHpsUL* model. Thus, since, by construction, t_{can} excludes our chosen nontheorem ϕ , and the canonical definition of models agrees with membership, we can state that, for each nontheorem ϕ of CnHpsUL*, there is a CnHpsUL* model in which ϕ is not t_{can} models φ. It gives us the weak completeness of CnHpsUL* as follows.

Theorem 3.9 (Weak completeness) If $\models_{CnHosUL^*} \phi$, then \vdash

54 Eunsuk Yang

CnHpsUL* Φ .

Furthermore, using Lemma 3.8 and the Linear Extension Property, we can show the strong completeness of CnHpsUL* as follows.

 $\begin{array}{lll} \textbf{Theorem 3.10} & (Strong \ completeness) & \textbf{CnHpsUL*} \ \ \text{is strongly} \\ complete \ w.r.t. \ the \ class \ of \ all \ L-frames. \end{array}$

4. Concluding remark

We investigated set-theoretical Kripke-style semantics for weakening-free non-commutative substructural fuzzy logics. As an example, we introduced a set-theoretical Kripke-style semantics for CnHpsUL*.

References

- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", *Archive for Mathematical Logic* 45: pp. 673-704.
- Cintula, P., Horčík, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", *Review of Symbolic Logic* 6: pp. 394-423.
- Cintula, P., Horčík, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", in F. Montagna (ed.) *Petr Hájek on Mathematical Fuzzy Logic*, Dordrecht: Springer, pp. 245-290.
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, in P. Cintula, P. Hájek, and C. Noguera (eds.) *Handbook of Mathematical Fuzzy Logic*, vol 1, London: College publications, pp. 103-207.
- Diaconescu, D. (2010), "Kripke-style semantics for non-commutative monoidal t-norm logic", *Journal of Multiple-Valued Logic and Soft Computing* 16: pp. 247-263.
- Diaconescu, D. and Georgescu, G. (2007), "On the forcing semantics for monoidal t-norm based logic", *Journal of Universal Computer Science* 13: pp. 1550-1572.
- Esteva, F. and Godo, L. (2001), "Monoidal t-norm based logic: towards a logic for left-continuous t-norms", *Fuzzy Sets and Systems* 124: pp. 271-288.
- Hájek, P. (2003a), "Fuzzy logics with noncommutative conjunction", *Journal of Logic and Computation* 13: pp.

- 469-479
- Hájek, P. (2003b), "Observations on non-commutative fuzzy logic", *Soft Computing* 8: pp. 38-43.
- Metcalfe, G. and Montagna, F. (2007), "Substructural Fuzzy Logics", *Journal of Symbolic Logic* 72: pp. 834-864.
- Metcalfe, G., Olivetti, N., and Gabbay, D. (2009), *Proof Theory for Fuzzy Logics*, Springer.
- Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic MTL∀", *Studia Logica* 71: pp. 227-245.
- Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly* 49: pp. 629-641.
- Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly* 50: pp. 104-107.
- Tsinakis, C. and Blount, K. (2003), "The structure of residuated lattices", *International Journal of Algebra and Computation* 13: pp. 437-461.
- Wang, S. (2013) "Logics for residuated pseudo-uninorms and their residua", *Fuzzy Sets and Systems* 218: pp. 24-31.
- Wang, S. and Zhao, B. (2009), "HpsUL is not the logic of pseudo-uninorms and their residua", *Logic Journal of the IGPL* 17: pp. 413-419.
- Yang, E. (2012), "Kripke-style semantics for UL", *Korean Journal of Logic* 15 (1): pp. 1-15.
- Yang, E. (2014a), "Algebraic Kripke-style semantics for

- weakening-free fuzzy logics", Korean Journal of Logic 17: pp. 181-195.
- Yang, E. (2014b), "Algebraic Kripke-style semantics three-valued paraconsistent logic", Korean Journal of Logic 17: pp. 441-460.
- Yang, E. (2015a), "Set-theoretic Kripke-style semantics for three-valued paraconsistent logic", Korean Journal of Logic 18: pp. 65-82.
- Yang, E. (2015b), "Two kinds of (binary) Kripke-style semantics for three-valued logic", Logique et Analyse 231: pp. 379-396.
- Yang, E. (2016), "Algebraic Kripke-style semantics for an extension of HpsUL, CnHpsUL*", Korean Journal of Logic 19: pp. 107-126.

전북대학교 철학과, 비판적사고와논술연구소

Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr

CnHpsUL*을 위한 집합 이론적 크립키형 의미론

양 은 석

이 글에서 우리는 약화 없는 비교환적인 퍼지 논리의 비대수적 크립키형 의미론 즉 집합 이론적 크립키형 의미론을 다룬다. 이를 위하여 먼저 우리는 가-유니놈에 기반한 퍼지 논리 HpsUL의 한 확장 체계인 CnHpsUL*을 소개한다. 다음으로 CnHpsUL*을 위한 집합 이론적 크립키형 의미론을 소개한다.

주요어: (집합 이론적) 크립키형 의미론, 대수적 의미론, 퍼지 논리, **HpsUL**, **CnHpsUL***.