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【Abstract】This paper deals with non-algebraic Kripke-style semantics, i.e, 
set-theoretical Kripke-style semantics, for weakening-free non-commutative 
fuzzy logics. We first recall  an extension of the pseudo-uninorm based fuzzy 
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1. Introduction

The aim of this paper is to introduce set-theoretic Kripke-style 
semantics for weakening-free non-commutative substructural fuzzy 
logic. For this, note that Yang recently introduced two kinds of 
(binary) Kripke-style semantics, i.e., algebraic and non-algebraic 
Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and 

de Morgan (briefly, dM) negations in Yang (2015b). He (2014b, 2015a) 
further considered such semantics for logics with weak-Boolean 
(briefly, wB) negations, which can be regarded as paraconsistent 
logics. Recently, he (2016) introduced algebraic Kripke-style 
semantics for a weakening-free non-commutative substructural 
fuzzy logic, CnHpsUL*. But he did not consider set-theoretical 
semantics for it. Thus, it is not clear whether this semantics 
works for weakening-free non-commutative substructural fuzzy 
logic systems. 

This is a tough question because Kripke-style semantics for 
well-known core fuzzy systems are algebraic, but not 
set-theoretical. Recall some historical facts associated with this. As 
Yang mentioned in Yang (2014a), after introducing algebraic 
semantics for t-norm1) (based) logics, their corresponding algebraic 
Kripke-style semantics have been introduced: after Esteva and 
Godo introducing algebraic semantics for monoidal t-norm (based) 
logics in Esteva & Godo (2001), their corresponding algebraic 
Kripke-style semantics were introduced in Montagna & Ono 

1) T-norms are commutative, associative, increasing, binary functions with 
identity 1 on the real unit interval [0,1].
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(2002), Montagna & Sacchetti (2003; 2004), and Diaconescu & 
Georgescu (2007). Furthermore, algebraic semantics and 
corresponding algebraic Kripke-style semantics for core fuzzy logic 
systems based on more general structures have been introduced: 
after Hájek introducing algebraic semantics for non-commutative 
pseudo-t-norm (based) logics in Hájek (2003a; 2003b), one 
corresponding algebraic Kripke-style semantics for the 
pseudo-t-norm (based) logic psMTLr was introduced in Diaconescu 
(2010). After Metcalfe and Montagna introducing algebraic 
semantics for weakening-free uninorm (based) logics in Metcalfe 
& Montagna (2007), their corresponding algebraic Kripke-style 
semantics were introduced in Yang (2012; 2014a). After Wang 
(2013) introducing algebraic semantics for CnHpsUL*, the 
HpsUL* with n-potency, its corresponding algebraic Kripke-style 
semantics was introduced in Yang (2016).

Then, these facts raise the following interesting question:

● Can we introduce set-theoretical Kripke-style semantics for 
core fuzzy systems, in particular CnHpsUL*?

The answer to the question is positive in the sense that we 
can provide such Kripke-style semantics for CnHpsUL*. For this, 
first, in Section 2 we recall the system CnHpsUL*. In Section 3, 
we introduce the other kind of binary relational Kripke-style 
semantics, non-algebraic set-theoretical Kripke-style semantics, for 
CnHpsUL*.

For convenience, we shall adopt the notation and terminology 
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similar to those in Cintula (2006), Metcalfe & Montagna (2007), 
Montagna & Sacchetti (2003; 2004), and Yang (2012; 2014a; 
2016), and we assume reader familiarity with them (along with 
results found therein).

2. Preliminaries: The logic CnHpsUL*

We base CnHpsUL* on a countable propositional language 
with formulas Fm built inductively as usual from a set of 
propositional variables VAR, binary connectives →, ⇝, &, ∧, ∨, 
and constants T, F, t2), with a defined connective:

df1. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We moreover define φn
t as φt & … & φt, n factors, where φt 

:= φ ∧ t. For the remainder we shall follow the customary 
notation and terminology. We use the axiom systems to provide a 
consequence relation.

Definition 2.1 (i) (Metcalfe et al. (2009), Tsinakis & Blount 
(2003), Wang (& Zhao) (2009; 2013)) HpsUL consists of the 
following axiom schemes and rules:

A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)

2) The constant t corresponds to the least designated element.
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A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. φ → T (verum ex quolibet, VE)
A7. F → φ  (ex falso quadlibet, EF)
A8. t   
A9. φ → (t → φ)
A10. (ψ → χ) → ((φ → ψ) → (φ → χ))  (prefixing, PF)
A11. φ → ((φ ⇝ ψ) → ψ)  
A12. (φ ⇝ (ψ → χ)) → (ψ → (φ ⇝ χ)  
A13. ψ → (φ → (φ & ψ))  
A14. (ψ → (φ → χ)) → ((φ & ψ) → χ)
A15. ((ψ ⇝ ψ) & (ψ → φ)) → (ψ ⇝ φ)
A16. (φt & ψt) → (φ ∧ ψ)
A17. (φ ∨ ψ)t → (φt ∨ ψt) (prelinearity, PRL1)
A18. (χ→(((φ∨ψ)→φ)&χ))∨(χ⇝(χ&((φ∨ψ)→ψ)))  (PRL2)
φ → ψ, φ ⊢ ψ (mp)
φ ⊢ φt  (adjt)
φ ⊢ ψ → (φ & ψ) (pn→)
φ ⊢ ψ ⇝ (ψ & φ) (pn⇝).
(ii) (Wang (2013)) CnHpsUL is HpsUL plus  φn ↔ φn-1, for 

2 ≤ n (n-potency, nP).
(iii) (Wang (2013)) CnHpsUL* is CnHpsUL plus (φ & ψ) →

t ⊢ (ψ & φ) → t3) (weak commutativity, WCM).

Proposition 2.2 (Cintula, Horčík, & Noguera (2013), Yang 
(2016)) CnHpsUL* proves: 

(1) φ → ψ ⊢ φ ⇝ ψ, φ ⇝ ψ ⊢ φ → ψ

3) Note that we may instead take (φ ⇝ t) → (φ ⇝ t)
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(2) φ → (ψ → χ) ⊢ (ψ & φ) → χ  (residuation1, Res1)
(3) φ → (ψ ⇝ χ) ⊢ (φ & ψ) → χ  (Res1⇝)
(4) (ψ & φ) → χ ⊢ φ → (ψ → χ)  (Res2)
(5) (φ & ψ) → χ ⊢ φ → (ψ ⇝ χ) (Res2⇝)
(6) φ→ψ ⊢ (χ&φ) → (χ&ψ), φ→ψ ⊢ (φ&χ) → (ψ&χ)
(7) (t & φ) ↔ φ  ↔ (φ & t)
(8) (φ & (φ → ψ)) → ψ.

A theory over CnHpsUL* is a set T of formulas. A proof in 
a sequence of formulas whose each member is either an axiom of 
CnHpsUL* or a member of T or follows from some preceding 
members of the sequence using the two rules in Definition 2.1. T 
⊢ φ, more exactly T ⊢CnHpsUL* φ, means that φ is provable in 
T with respect to (w.r.t.) CnHpsUL*, i.e., there is a 
CnHpsUL*-proof of φ in T. 

The deduction theorem for CnHpsUL*  is following:

Definition 2.3 (Cintula & Noguera (2011)) Let T be a theory 
over CnHpsUL*, and φ, ψ formulas. L is almost (MP)-based with 
the set of basic deduction terms {λα(★), ρα(★) : α ∈ Fm}. 
Therefore, the following holds:

T, φ ⊢L ψ if and only if (iff) T ⊢ χ(φ) → ψ for some 
conjunction χ of iterated conjugates4).

A theory T is inconsistent if T ⊢ F; otherwise it is 
consistent. 

4) For the notion of conjugate, see Cintula & Noguera (2011) and Yang (2016).
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3. Kripke-style semantics for CnHpsUL*

We consider here set-theoretical Kripke-style semantics for 
CnHpsUL*.

Definition 3.1 (Yang (2016)) 
(i) (Operational Kripke frame) An operational Kripke frame is 

a structure X = (X, ⊤, ⊥, t, f, ≤, ＊) such that (X, ⊤, ⊥, t, 
f, ≤, ＊) is a linearly ordered pointed bounded monoid. The 
elements of X are called nodes.

(ii) (Residuated operational Kripke frame) An operational 
Kripke frame is said to be residuated if it has suprema w.r.t. ＊, 
i.e., for every x, y ∈ X, the sets {z: x ＊ z ≤ y} and {z: z 
＊ x ≤ y} have suprema.

(iii) (CnHpsUL* frame) A CnHpsUL* frame is a residuated 
operational Kripke frame, where ＊ is conjunctive (i.e., ⊥ ＊ ⊤

= ⊥) and left-continuous (i.e., whenever sup{xi : i ∈ I} exists, 
x ＊ sup{xi : i ∈ I} = sup{x ＊ xi : i ∈ I}) and sup{xi : i ∈
I} ＊ x = sup{xi ＊ x : i ∈ I}).

Definition 3.2 ensures that a CnHpsUL* frame has suprema 
w.r.t. ＊, i.e., for every x, y ∈ X, the sets {z: x ＊ z ≤ y} 
and {z: z ＊ x ≤ y} have the suprema. X is said to be 
complete if ≤ is a complete order.

An evaluation or forcing on an algebraic Kripke frame is a 
relation ⊩ between nodes and propositional variables, and 
arbitrary formulas subject to the conditions below: for every 
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propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p;
(min)   ⊥ ⊩ p; and

for arbitrary formulas,

(t)   x ⊩ t  iff x ≤ t;
(f)   x ⊩ f  iff x ≤ f;
(⊥)  x ⊩ F iff x = ⊥;
(∧)  x ⊩ φ ∧ ψ  iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ  iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that y ⊩ φ, 

z ⊩ ψ, and x ≤ y ＊ z;
(→)  x ⊩ φ → ψ iff for all y ∈ X, if y ⊩ φ, then y ＊ x 
⊩ ψ;

(⇝)  x ⊩ φ ⇝ ψ iff for all y ∈ X, if y ⊩ φ, then x ＊ y 
⊩ ψ.

An evaluation or forcing on a CnHpsUL* frame is an 
evaluation or forcing further satisfying that (max) for every 
atomic sentence p, {x : x ⊩ p} has a maximum.

Definition 3.2 (Yang (2016)) 
(i) (Residuated operational Kripke model) A residuated 

operational is a pair (X, ⊩), where X is a residuated operational 
Kripke frame and ⊩ is a forcing on X.



Set-Theoretical Kripke-Style Semantics for an Extension of HpsUL, CnHpsUL* 47

(ii) (CnHpsUL* model) A CnHpsUL* model is a pair (X, ⊩), 
where X is a CnHpsUL* frame and ⊩ is a forcing on X. A 
CnHpsUL* model (X, ⊩) is said to be complete if X is a 
complete frame and ⊩ is a forcing on X.

Definition 3.3 (Cf. Montagna & Sacchetti (2004)) Given a 
residuated operational Kripke model (X, ⊩), a node x of X and 
a formula φ, we say that x forces φ to express x ⊩ φ. We say 
that φ is true in (X, ⊩) if t ⊩ φ, and that φ is valid in the 
frame X (expressed by X models φ) if φ is true in (X, ⊩) for 
every forcing ⊩ on X.

Definition 3.4 A residuated operational Kripke frame X is a 
CnHpsUL* frame iff all axioms of CnHpsUL* are valid in X. 
We say that a CnHpsUL* model (X, ⊩) is a CnHpsUL* model 
if X is a CnHpsUL* frame.

For soundness and completeness for CnHpsUL*, let ⊢CnHpsUL* 
φ be the theoremhood of φ in CnHpsUL*. 

Proposition 3.5 (Soundness, Yang (2016)) If ⊢CnHpsUL* φ, then 
φ is valid in every CnHpsUL* frame.

Now we provide completeness results for CnHpsUL* using 
set-theoretical Kripke-style semantics. A theory T is said to be 
linear if, for each pair φ, ψ of formulas, we have T ⊢ φ → ψ 

or T ⊢ ψ → φ. By a CnHpsUL*-theory, we mean a theory T 
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closed under rules of CnHpsUL*. As in relevance logic, by a 
regular CnHpsUL*-theory, we mean a CnHpsUL*-theory 
containing all of the theorems of CnHpsUL*. Since we have no 
use of irregular theories, henceforth, by a CnHpsUL*-theory, we 
henceforth we mean a CnHpsUL*-theory containing all of the 
theorems of CnHpsUL*.

Moreover, where T is a linear CnHpsUL*-theory, we define 
the canonical CnHpsUL* frame determined by T to be a structure 
X = (Xcan, ⊤can, ⊥can, tcan, fcan, ≤can, *can), where ⊤can = {φ : T 
⊢CnHpsUL* T → φ}, ⊥can = {φ : T ⊢CnHpsUL* F → φ}, tcan = T,  
fcan = {φ : T ⊢CnHpsUL* f → φ}, Xcan is the set of linear 
CnHpsUL*-theories extending tcan, ≤can is ⊇ restricted to Xcan, 
i.e, x ≤can y iff {φ : x ⊢CnHpsUL* φ} ⊇ {φ : y ⊢CnHpsUL* φ}, 
and *can is defined as x *can y := {φ & ψ : for some φ ∈ x, ψ 

∈ y} satisfying groupoid properties corresponding to CnHpsUL* 
frames on (Xcan, tcan, ≤can). Note that the base tcan is constructed 
as the linear CnHpsUL*-theory that excludes nontheorems of 
CnHpsUL*, i.e., excludes φ such that ⊬CnHpsUL* φ. The partial 
orderedness and the linear orderedness of the canonical 
CnHpsUL* frame depend on ≤can restricted on Xcan. Then, first, 
the following is obvious.

Proposition 3.6 A canonical CnHpsUL* frame is linearly 
ordered.

Proof: It is easy to show that a canonical L frame is partially 
ordered. We show that this frame is connected and so linearly 
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ordered. Suppose toward contradiction that neither x ≤can y nor y 
≤can x. Then, there are φ, ψ such that φ ∈ y, φ ∉ x, ψ ∈ x, 
and ψ ∉ y. Note that, since tcan is a linear theory, φ → ψ ∈

tcan or ψ → φ ∈ tcan. Let φ → ψ ∈ tcan and thus φ → ψ ∈

y. Then, by (mp), we have ψ ∈ y, a contradiction. The case, 
where ψ → φ ∈ tcan, is analogous. □

Next, we define a canonical evaluation as follows:

(a) x ⊢can φ iff φ ∈ x.

This definition allows us to state the following lemmas.

Lemma 3.7 tcan ⊢can φ → ψ iff for all x ∈ Xcan, if x ⊢can 
φ, then x ⊢can ψ.

Proof: By (a), we need to show that φ → ψ ∈ tcan iff for 
all x ∈ Xcan, if φ ∈ x, then ψ ∈ x. For the left-to-right 
direction, we assume φ → ψ ∈ tcan and φ ∈ x, and show ψ 

∈ x. The definition of *can ensures φ & (φ → ψ) ∈ x *can tcan 
= x. By Proposition 2.2 (8), we have (φ & (φ → ψ)) → ψ ∈

tcan and thus (φ & (φ → ψ)) → ψ ∈ x. Therefore, we obtain ψ 

∈ x by (mp). We prove the other direction contrapositively. 
Suppose φ → ψ ∉ tcan. We set x0 = {Z : there exists X ∈ tcan 
and tcan ⊢ (φ & X) → Z}. Clearly, x0 ⊇ tcan, φ ∈ x0, but also 
ψ ∉ x0. (Otherwise, tcan ⊢ (φ & X) → ψ and thus tcan ⊢ X 
→ (φ → ψ); therefore, since tcan ⊢ X, by (mp), we have tcan ⊢
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φ → ψ, a contradiction.) 
Then, by the Linear Extension Property of Theorem 12.9 in 

Cintula, Horčík, & Noguera (2015), we have a linear theory x ⊇
x0 with ψ ∉ x; therefore φ ∈ x but ψ ∉ x. □

Lemma 3.8 (Canonical Evaluation Lemma) ⊩can is an 
evaluation.

Proof: We first consider the conditions for propositional 
variables.

For (AHC), we must show that: for every propositional 
variable p,

if x ⊩can p and y ≤can x, then y ⊩can p.

Let x ⊩can p and y ≤can x. By (a), we have p ∈ x and x 
⊆ y, and thus p ∈ y. Hence, by (a), we have y ⊩can p.

For (min), we must show that: for every propositional variable 
p,

⊥can ⊩can p.

By (a), we need to show that p ∈ ⊥can. Since ⊥can = {φ : 
T ⊢CnHpsUL* F → φ}, p ∈ ⊥can.

We next consider the conditions for propositional constants t, 
f, and F.

For (t), we must show that:
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x ⊩can t iff x ≤can tcan.

By (a), we need to show that t ∈ x iff x ⊇ tcan. This is 
obvious since tcan = T and x is a theory extending T.

For (f), we must show that:

x ⊩can f iff x ≤can fcan.

By (a), we need to show that f ∈ x iff x ⊇ fcan. This is 
obvious since  fcan = {φ : T ⊢CnHpsUL* f → φ} and x is a 
theory extending T.

For (⊥), we must show that:

x ⊩can F iff x =can ⊥can.

By (a), we need to show that F ∈ x iff x =can ⊥can. This is 
obvious since  ⊥can = {φ : T ⊢CnHpsUL* F → φ}.

Now we consider the conditions for arbitrary formulas.
For (∧), we must show

x ⊩can φ ∧ ψ iff x ⊩can φ and x ⊩can ψ.

By (a), we need to show that φ ∧ ψ ∈ x iff φ ∈ x and 
ψ ∈ x. The left-to-right direction follows from (∧-E) and (mp). 
The right-to-left direction follows from (adj).

For (∨), we must show
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x ⊩can φ ∨ ψ iff x ⊩can φ or x ⊩can ψ.

By (a), we need to show that φ ∨ ψ ∈ x iff φ ∈ x or ψ 

∈ x. The left-to-right direction follows from the fact that linear 
theories are also prime theories in CnHpsUL* (see Cintula & 
Noguera (2011)). The right-to-left direction follows from (∨-I) 
and (mp).

For (&), we must show

x ⊩can φ & ψ iff there are y, z ∈ X such that y ⊩can φ, z 
⊩can ψ, and x = y *can z.

By (a), we need to show that φ & ψ ∈ x iff there are y, z 
∈ X such that φ ∈ y, ψ ∈ z, and x = y *can z. This directly 
follows from the definition of *can.

For (→), we must show

x ⊩can φ → ψ iff for all y ∈ X, if y ⊩can φ, then y *can x 
⊩can ψ.

By (a), we need to show that φ → ψ ∈ x iff for all y ∈
X, if φ ∈ y, then ψ ∈ y *can x. For the left-to-right direction, 
we assume φ → ψ ∈ x and φ ∈ y, and show ψ ∈ y *can x. 
The definition of *can ensures φ & (φ → ψ) ∈ y *can x. Then, 
by Proposition 2.2 (8) and Lemma 3.7, we obtain ψ ∈ y *can x. 
We prove the right-to-left direction contrapositively. Suppose φ →

ψ ∉ x. We need to construct a linear theory y such that φ ∈ y 
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and ψ ∉ y *can x. Let y0 be the smallest regular 
CnHpsUL*-theory extending tcan with {φ} and satisfying y0 *can x 
= {Z : there is X ∈ x and tcan ⊢ (φ & X) → Z}. Clearly, φ 

∈ y0, but ψ ∉ y0 *can x. (Otherwise, tcan ⊢ (φ & X) → ψ and 
thus tcan ⊢ X → (φ → ψ) for some X ∈ x; therefore, φ → ψ 

∈ y0 *can x, a contradiction.) Then, by the Linear Extension 
Property, we can obtain a linear theory y such that y0 ⊆ y and 
y *can x = {Z : there is X ∈ x and tcan ⊢ (φ & X) → Z}; 
therefore, φ ∈ y but ψ ∉ y *can x.

For (⇝), we must show

x ⊩can φ ⇝ ψ iff for all y ∈ X, if y ⊩can φ, then x *can y 
⊩can ψ.

Its proof is analogous to that for (→). □ 

Let us call a model M, = (X, ⊩can) (i.e., (Xcan, ⊤can, ⊥can, 
tcan, fcan, ≤can, *can, ⊩can)), for CnHpsUL*, a CnHpsUL* model. 
Then, by Lemma 3.8, the canonically defined (X, ⊩can) is a 
CnHpsUL* model. Thus, since, by construction, tcan excludes our 
chosen nontheorem φ, and the canonical definition of models 
agrees with membership, we can state that, for each nontheorem 
φ of CnHpsUL*, there is a CnHpsUL* model in which φ is not 
tcan models φ. It gives us the weak completeness of CnHpsUL* 
as follows.

Theorem 3.9 (Weak completeness) If ⊨CnHpsUL* φ, then ⊢



Eunsuk Yang54

CnHpsUL* φ.

Furthermore, using Lemma 3.8 and the Linear Extension 
Property, we can show the strong completeness of CnHpsUL* as 
follows.

Theorem 3.10 (Strong completeness) CnHpsUL* is strongly 
complete w.r.t. the class of all L-frames.

4. Concluding remark

We investigated set-theoretical Kripke-style semantics for 
weakening-free non-commutative substructural fuzzy logics. As an 
example, we introduced a set-theoretical Kripke-style semantics for 
CnHpsUL*. 
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CnHpsUL*을 위한 집합 이론적 크립키형 의미론
양 은 석

이 글에서 우리는 약화 없는 비교환적인 퍼지 논리의 비대수적 

크립키형 의미론 즉 집합 이론적 크립키형 의미론을 다룬다. 이를 

위하여 먼저 우리는 가-유니놈에 기반한 퍼지 논리 HpsUL의 한 

확장 체계인 CnHpsUL*을 소개한다. 다음으로 CnHpsUL*을 위한 

집합 이론적 크립키형 의미론을 소개한다.

주요어: (집합 이론적) 크립키형 의미론, 대수적 의미론, 퍼지 논

리, HpsUL, CnHpsUL*.


