=247 21-1(2018) pp. 39-57

Set-Theoretical Kripke-Style Semantics for an
Extension of HpsUL, CnHpsUL*"
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[Abstract] This paper deals with non-algebraic Kripke-style semantics, i.e,

set-theoretical Kripke-style semantics, for weakening-free non-commutative
fuzzy logics. We first recall an extension of the pseudo-uninorm based fuzzy
logic HpsUL, CnHpsUL*. We next introduce set-theoretical Kripke-style
semantics for it.
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1. Introduction

The aim of this paper is to introduce set-theoretic Kripke-style
semantics for weakening-free non-commutative substructural fuzzy
logic. For this, note that Yang recently introduced two kinds of
(binary) Kripke-style semantics, i.e., algebraic and non-algebraic
Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and
de Morgan (briefly, dM) negations in Yang (2015b). He (2014b, 2015a)
further considered such semantics for logics with weak-Boolean
(briefly, wB) negations, which can be regarded as paraconsistent
logics. Recently, he (2016) introduced algebraic Kripke-style
semantics for a weakening-free non-commutative substructural
fuzzy logic, CnHpsUL*. But he did not consider set-theoretical
semantics for it. Thus, it is not clear whether this semantics
works for weakening-free non-commutative substructural fuzzy
logic systems.

This is a tough question because Kripke-style semantics for
well-known core fuzzy systems are algebraic, but not
set-theoretical. Recall some historical facts associated with this. As
Yang mentioned in Yang (2014a), after introducing algebraic
semantics for t-norm!) (based) logics, their corresponding algebraic
Kripke-style semantics have been introduced: after Esteva and
Godo introducing algebraic semantics for monoidal t-norm (based)
logics in Esteva & Godo (2001), their corresponding algebraic

Kripke-style semantics were introduced in Montagna & Ono

) T-norms are commutative, associative, increasing, binary functions with
identity 1 on the real unit interval [0,1].
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(2002), Montagna & Sacchetti (2003; 2004), and Diaconescu &
Georgescu  (2007).  Furthermore, algebraic = semantics and
corresponding algebraic Kripke-style semantics for core fuzzy logic
systems based on more general structures have been introduced:
after Hajek introducing algebraic semantics for non-commutative
pseudo-t-norm (based) logics in Hajek (2003a; 2003b), one
corresponding  algebraic  Kripke-style  semantics  for  the
pseudo-t-norm (based) logic psMTL' was introduced in Diaconescu
(2010). After Metcalfe and Montagna introducing algebraic
semantics for weakening-free uninorm (based) logics in Metcalfe
& Montagna (2007), their corresponding algebraic Kripke-style
semantics were introduced in Yang (2012; 2014a). After Wang
(2013) introducing algebraic semantics for CnHpsUL*, the
HpsUL* with n-potency, its corresponding algebraic Kripke-style
semantics was introduced in Yang (2016).

Then, these facts raise the following interesting question:

@® Can we introduce set-theoretical Kripke-style semantics for

core fuzzy systems, in particular CnHpsUL*?

The answer to the question is positive in the sense that we
can provide such Kripke-style semantics for CnHpsUL*. For this,
first, in Section 2 we recall the system CnHpsUL*. In Section 3,
we introduce the other kind of binary relational Kripke-style
semantics, non-algebraic set-theoretical Kripke-style semantics, for
CnHpsUL*.

For convenience, we shall adopt the notation and terminology
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similar to those in Cintula (2006), Metcalfe & Montagna (2007),
Montagna & Sacchetti (2003; 2004), and Yang (2012; 2014a;
2016), and we assume reader familiarity with them (along with

results found therein).

2. Preliminaries: The logic CnHpsUL*

We base CnHpsUL* on a countable propositional language
with formulas Fm built inductively as usual from a set of
propositional variables VAR, binary connectives —, i, & N, V,

and constants T, F, ©), with a defined connective:

dfl. o @y = (b = v) N (v — ).

We moreover define ¢% as &; & =+ & ¢, n factors, where ¢,
= ¢ A t For the remainder we shall follow the customary
notation and terminology. We use the axiom systems to provide a

consequence relation.

Definition 2.1 (i) (Metcalfe et al. (2009), Tsinakis & Blount
(2003), Wang (& Zhao) (2009; 2013)) HpsUL consists of the
following axiom schemes and rules:

Al. & — ¢ (self-implication, SI)

A2. (O AN y)—> 0, (@ N w) > ¢ (A-elimination, A-E)

A3. (D—=>Y)N(D—X)) — (d—=>(wAX)) (/\-introduction, /A -I)

Ad. & — (O V w), g — (¢ V y) (V-introduction, V-I)

2) The constant t corresponds to the least designated element.
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AS. () AW—X) = (OVw)=>x) (V-climination, V-E)

A6. ¢ — T (verum ex quolibet, VE)

A7. F —> ¢ (ex falso quadlibet, EF)

A8. t

A9. & — (t — )

Al0. (w = x) > (& = w) = (® — X)) (prefixing, PF)

AlL 0 = (0 T w) = v)

AR § W= X)) > W= (¢ X

A3y = (0 = (P & v)

Ald (g = (¢ > x) = (¢ & ¥) = X)

AIS. (v § & @ —0) = (W T 0)

Al6. (be & W) — (D A )

Al7. (d V w) — (&¢ V wy) (prelinearity, PRLI)

A18. (X=(((0V¥)=P)&X)) V (X ¥ (X&(DVw)—>w))) (PRL2)

o —>wy, ¢ - y (mp)

¢ = & (adj)

b F v —(d &y (pn-)

b F w3 (& P (pny).

(i) (Wang (2013)) CnHpsUL is HpsUL plus ¢" <> @™, for
2 < n (n-potency, nP).

(iii) (Wang (2013)) CnHpsUL* is CnHpsUL plus (¢ & y) —
t F (v & ¢) — ) (weak commutativity, WCM).

Proposition 2.2 (Cintula, Hor¢ik, & Noguera (2013), Yang
(2016)) CnHpsUL* proves:
Moé->wv o3 wdi vk ooy

3) Note that we may instead take (p § t) — (& § ¢
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2)d—=>w—>x)F (v & $) = X (residuationl, Resl)
o=@ & X)F (@ &w — X (Resly)

@ W&d) >xF o= wW—>Xx (Res2)

G) (@ &w—>xF &> W F X Res2y)

6) o=y F X&) = (X&), d—y F (P&X) — (W&X)
N t& P ¢ < (b &Y

®) (¢ & —w) — y.

A theory over CnHpsUL* is a set T of formulas. A proof in
a sequence of formulas whose each member is either an axiom of
CnHpsUL* or a member of T or follows from some preceding
members of the sequence using the two rules in Definition 2.1. T
= ¢, more exactly T F campsur+ @, means that ¢ is provable in
T with respect to (w.rt) CnHpsUL* ie., there is a
CnHpsUL*-proof of ¢ in T.

The deduction theorem for CnHpsUL* is following:

Definition 2.3 (Cintula & Noguera (2011)) Let T be a theory
over CnHpsUL*, and ¢, y formulas. L is almost (MP)-based with
the set of basic deduction terms {A4(k), pu*) : a & Fmj.
Therefore, the following holds:

T, ¢ Fp w if and only if (iff) T + x(¢) — w for some

conjunction X of iterated conjugates®.

A theory T is inconsistent if T | F; otherwise it is

consistent.

4) For the notion of conjugate, see Cintula & Noguera (2011) and Yang (2016).
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3. Kripke-style semantics for CnHpsUL*

We consider here set-theoretical Kripke-style semantics for
CnHpsUL*.

Definition 3.1 (Yang (2016))

(1) (Operational Kripke frame) An operational Kripke frame is
a structure X = (X, T, L, t f <, *)such that (X, T, L, t,
f, <, *) is a linearly ordered pointed bounded monoid. The
elements of X are called nodes.

(i) (Residuated operational Kripke frame) An operational
Kripke frame is said to be residuated if it has suprema w.r.t. *,
Le, for every x, y € X, the sets {z: x * z < y} and {z: z
* x < y} have suprema.

(iii) (CnHpsUL* frame) A CnHpsUL* frame is a residuated
operational Kripke frame, where * is conjunctive (i.e., L * T
= 1) and left-continuous (i.e., whenever sup{x; : i € I} exists,
X * sup{xi 01 € I} =sup{x * x,:1 € [}) and sup{xi : i €
I * x=sup{xi * x:1€& I}).

Definition 3.2 ensures that a CnHpsUL* frame has suprema
wrt *, ie, for every x, y € X, the sets {z:. x * z < vy}
and {z: z * x < vy} have the suprema. X is said to be
complete if < is a complete order.

An evaluation or forcing on an algebraic Kripke frame is a
relation |+ between nodes and propositional variables, and

arbitrary formulas subject to the conditions below: for every
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propositional variable p,

(AHC) if x F pandy < x, then y IF p;
(min) L I p; and

for arbitrary formulas,

®H xIFt iff x <t
H £ iff x < f
(L) x F Fiff x = L;

(N) F o ANy iff x F ¢ and x |+ y;
(V)

(&)

o VvV y iff x F dorx IF y;
z -y, and x <y * gz

>

X e

- ¢ & y iff there are y, z € X such that y I ¢,

=) xkF ¢—yiff forally € X, ify F ¢, theny * x
- w;
(3) x - ¢ 7 yiffforally € X, ify IF ¢, then x * y
- .

An evaluation or forcing on a CnHpsUL* frame is an
evaluation or forcing further satisfying that (max) for every

atomic sentence p, {x : x |- p} has a maximum.

Definition 3.2 (Yang (2016))
(1) (Residuated operational Kripke model) A residuated

operational is a pair (X, IF), where X is a residuated operational

Kripke frame and |- is a forcing on X.
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(ii) (CnHpsUL* model) A CnHpsUL* model is a pair (X, IF),
where X is a CnHpsUL* frame and I is a forcing on X. A
CnHpsUL* model (X, ) is said to be complete if X is a

complete frame and |- is a forcing on X.

Definition 3.3 (Cf. Montagna & Sacchetti (2004)) Given a
residuated operational Kripke model (X, ), a node x of X and
a formula ¢, we say that x forces ¢ to express x |- ¢. We say
that ¢ is #rue in (X, IF) if t I ¢, and that ¢ is valid in the
frame X (expressed by X models ¢) if ¢ is true in (X, IF) for

every forcing |- on X.

Definition 3.4 A residuated operational Kripke frame X is a
CnHpsUL* frame iff all axioms of CnHpsUL* are valid in X.
We say that a CnHpsUL* model (X, ) is a CnHpsUL* model
if X is a CnHpsUL* frame.

For soundness and completeness for CnHpsUL*, let F canpsurs
¢ be the theoremhood of ¢ in CnHpsUL*.

Proposition 3.5 (Soundness, Yang (2016)) If - compsurs ¢, then
¢ is valid in every CnHpsUL* frame.

Now we provide completeness results for CnHpsUL* using
set-theoretical Kripke-style semantics. A theory T is said to be
linear if, for each pair ¢, y of formulas, we have T -+ ¢ — y

or T - y — ¢. By a CnHpsUL*-theory, we mean a theory T
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closed under rules of CnHpsUL*. As in relevance logic, by a
regular  CnHpsUL*-theory, we mean a CnHpsUL*-theory
containing all of the theorems of CnHpsUL*. Since we have no
use of irregular theories, henceforth, by a CnHpsUL*-theory, we
henceforth we mean a CnHpsUL*-theory containing all of the
theorems of CnHpsUL*.

Moreover, where T is a linear CnHpsUL*-theory, we define
the canonical CnHpsUL* frame determined by T to be a structure
X = Xeans Teans Lecans teans foans <cans ¥ecan)y Where Ty = {¢ : T
Fopsurs T = 0}, Lo = {d ¢ T Fompsurs F = O}, tean = T,
fam = {® T Feoumpsurr f — ¢}, Xean is the set of linear
CnHpsUL*-theories extending ten, <cn is 2 restricted to Xea,
ie, X <cam y Uf {& : X Femmpsr O} 2 {d 1y Fcampovrr 9},
and *g, is defined as x *u, vy = {¢ & y : for some ¢ € x, y
€ vy} satisfying groupoid properties corresponding to CnHpsUL*
frames on (Xcan, tean, <can). Note that the base t., is constructed
as the linear CnHpsUL*-theory that excludes nontheorems of
CnHpsUL*, ie., excludes ¢ such that V campsux ®. The partial
orderedness and the linear orderedness of the canonical
CnHpsUL* frame depend on <, restricted on X, Then, first,

the following is obvious.

Proposition 3.6 A canonical CnHpsUL* frame is linearly

ordered.

Proof: It is easy to show that a canonical L frame is partially

ordered. We show that this frame is connected and so linearly
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ordered. Suppose toward contradiction that neither x <, y nor y
<en X. Then, there are ¢, ¥ such that ¢ € y, ¢ & x, ¥y € x,
and ¢ & y. Note that, since tg, is a linear theory, § — ¢ &
tean OF W — @ € ten. Let @ = ¥ € tg, and thus ¢ — v €
y. Then, by (mp), we have y & vy, a contradiction. The case,

where y — @ € tep, is analogous. [

Next, we define a canonical evaluation as follows:

(@) x Fen ¢ iff § € x.

This definition allows us to state the following lemmas.

Lemma 3.7 te, Fean @ — w iff for all x € X, if X Femn
¢, then X F e W.

Proof: By (a), we need to show that § — w & t,, iff for
all x € X, if @ € x, then v & x. For the left-to-right
direction, we assume ¢ — Yy € ty, and & € x, and show Yy
€ x. The definition of *,, ensures ¢ & (¢ — W) € X *un tean
= X. By Proposition 2.2 (8), we have (¢ & (¢ — w)) — ¢y €
ten and thus (¢ & (¢ — w)) — y & x. Therefore, we obtain y
€ x by (mp). We prove the other direction contrapositively.
Suppose & — ¢ & ten. We set xo = {Z : there exists X € tey
and tgn F (¢ & X) — Z}. Clearly, X9 2 ten, § € X0, but also
Y & X, (Otherwise, tsn H (¢ & X) — w and thus to, F X
— (¢ — w); therefore, since t,n — X, by (mp), we have ten H



50  Eunsuk Yang

b — w, a contradiction.)

Then, by the Linear Extension Property of Theorem 12.9 in
Cintula, Horc¢ik, & Noguera (2015), we have a linear theory x 2
Xo wWith ¢ & x; therefore d & x but y & x. [J

Lemma 3.8 (Canonical Evaluation Lemma) Ik, is an

evaluation.

Proof: We first consider the conditions for propositional
variables.
For (AHC), we must show that: for every propositional

variable p,

if X Fen pand y <cm X, then y IFen p.

Let X IFean p and y <cm X. By (a), we have p € x and x
C vy, and thus p € y. Hence, by (a), we have y IFcn p.

For (min), we must show that: for every propositional variable

p;

J~can I- can P

By (a), we need to show that p & L, Since L = {O :
T Fcmpsurr F = &}, p € Lean.

We next consider the conditions for propositional constants t,
f, and F.

For (t), we must show that:
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X Fen tiff X <can tean.

By (a), we need to show that t & x iff x 2 tg, This is
obvious since tz, = T and x is a theory extending T.

For (f), we must show that:

X Fen £iff X <can fen

By (a), we need to show that f & x iff x 2 fe, This is
obvious since fan = {® : T Fcumpsur f — P} and x is a
theory extending T.

For (L), we must show that:

X ”_can F lff X =can J—can-

By (a), we need to show that F & x iff x =g, Lca. This is
obvious since Ly = { : T Fcampsus F — ¢F.
Now we consider the conditions for arbitrary formulas.

For (A), we must show

X Fem @ N @ iff X e ¢ and x ke .

By (a), we need to show that ¢ N ¢ € x iff § € x and
y € x. The left-to-right direction follows from (/A-E) and (mp).
The right-to-left direction follows from (adj).

For (V), we must show
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X Fen @ V wiff X Fen & or X IFean W

By (a), we need to show that ¢ V ¢y € x iff § € x or y
€ x. The left-to-right direction follows from the fact that linear
theories are also prime theories in CnHpsUL* (see Cintula &
Noguera (2011)). The right-to-left direction follows from (V-I)
and (mp).

For (&), we must show

X Fen & & y iff there are y, z € X such that y ke O, 2

e W, and x =y ¥ Z

By (a), we need to show that ¢ & y & x iff there are y, z
€ X such that ¢ € y, ¢y € z and x =y *,, z This directly
follows from the definition of *..,.

For (—), we must show

X Feaw & > yiff forally € X, if y Few &, then y *an X
”_can qj'

By (a), we need to show that § — w & x iff for all y €
X, if o € vy, then y € y *,, x. For the left-to-right direction,
we assume ¢ — y € x and ¢ € y, and show ¥y € y *. x.
The definition of *, ensures ¢ & (¢ — W) € y *un X. Then,
by Proposition 2.2 (8) and Lemma 3.7, we obtain ¢ € y *q, X.
We prove the right-to-left direction contrapositively. Suppose ¢ —

y & x. We need to construct a linear theory y such that ¢ € y
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and ¥y & y *u, x. Let y, be the smallest regular
CnHpsUL*-theory extending t.,, with {¢} and satisfying yo *cn X
= {Z : there is X € x and tq F (¢ & X) — Z}. Clearly, ¢
€ vy, but ¢ & yp *un X. (Otherwise, tan F (¢ & X) — w and
thus tn F X — (¢ — w) for some X € x; therefore, b — w
€ vy *an X, a contradiction.) Then, by the Linear Extension
y *an X = {Z : there is X € x and t F (O & X) — Z};
therefore, ® € y but ¢y & y *,, x.

Property, we can obtain a linear theory y such that yp S y and

For ({), we must show

X Fen & T w iff for all y € X, ify Fen ¢, then x * y
”_ can lp’

Its proof is analogous to that for (—). []

Let us call a model M, = (X, IFen) (i€, Xean, T cans A cans
teans Teans Zcams Feans IFean)), for CnHpsUL*, a CnHpsUL* model.
Then, by Lemma 3.8, the canonically defined (X, Ien) is a
CnHpsUL* model. Thus, since, by construction, t., excludes our
chosen nontheorem ¢, and the canonical definition of models
agrees with membership, we can state that, for each nontheorem
¢ of CnHpsUL?*, there is a CnHpsUL* model in which ¢ is not
tan models ¢. It gives us the weak completeness of CnHpsUL*

as follows.

Theorem 3.9 (Weak completeness) If Fcompours @, then =
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CnHpsUL* q)

Furthermore, using Lemma 3.8 and the Linear Extension
Property, we can show the strong completeness of CnHpsUL* as

follows.

Theorem 3.10 (Strong completeness) CnHpsUL* is strongly

complete w.r.t. the class of all L-frames.

4. Concluding remark

We investigated set-theoretical Kripke-style semantics for
weakening-free non-commutative substructural fuzzy logics. As an
example, we introduced a set-theoretical Kripke-style semantics for
CnHpsUL*.
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