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【Abstract】This paper deals with Routley-Meyer semantics for two versions 
of R of Relevance. For this, first, we introduce two systems Rt, RT and their 
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for these systems.
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1. Introduction

Kripke-style semantics are known as binary relational semantics 
for modal and intuitionistic logics (Kripke (1963; 1965a; 1965b). 
But, in general, this semantics does not work for relevance logics 
(see Dunn (1986)). Because of this, Routley and Meyer introduced 
the so-called Routley-Meyer semantics for relevance logics (see 
Routley and Meyer (1972; 1973)). This semantics is a 
generalization of Kripke-style semantics to ternary relational 
semantics. So far, many logicians have had difficulties in 
providing Kripke-style semantics for relevance logics. Recently, 
Yang provided Kripke-style semantics (as well as algebraic 
semantics) for R of Relevance (Yang (2014)).

The aim of this paper is to provide Routley-Meyer semantics 
for R. To some readers this seems strange because, as mentioned 
above, Routley-Meyer semantics is known to us as semantics for 
relevance logics, in particular for R. However, as Yang noted in 
his (2013), there are at least three versions of R. One is the 
system R0 that has no propositional constants; another is the 
system Rt that has propositional constants t, f; the other is the 
system RT that has propositional constants t, f, T, F. The 
well-known Routley-Meyer semantics for R is that for R0 but not 
for Rt and RT (see Dunn (1986)).

Here, we introduce Routley-Meyer semantics for the other two 
versions of R, i.e., Rt and RT. One interesting fact is that 
Routley-Meyer semantics, which will be introduced here, does not 
require star operation * for negation. Note that, in general, 
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Routley-Meyer semantics requires that operation for negation. 
Thus, our semantics can be regarded as Routley-Meyer semantics 
without star operation *.

This paper is organized as follows. In Sect. 2, we introduce the 
systems Rt and RT, along with their corresponding algebraic 
semantics. In Sect. 3, we provide Routley-Meyer semantics for 
these systems. We prove that Rt and RT are sound and complete 
with respect to (w.r.t.) such semantics.

For convenience, we adopt the notations and terminology 
similar to those in Anderson, Belnap, & Dunn (1992), Dunn 
(1986), Dunn & Hardegree (2001), Yang (2013, 2014), and 
assume reader familiarity with them (together with results found 
therein).

2. Two versions of R: Rt and RT

In this section, we introduce two versions of R Rt and RT. We 
base Rt on a countable propositional language with formulas Fm 
built inductively as usual from a set of propositional variables 
VAR, binary connectives →, ∧, ∨, and a constant f, with 
defined connectives:1)

df1. ～φ := φ → f
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ)
df3. φ & ψ := ～(φ → ～ψ).

 1) Note that, while ∧ is the extensional conjunction connective, & is the 
intensional conjunction one.
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The constant t is defined as f → f. We moreover define φt := 
φ ∧ t. For the remainder, we shall follow the customary 
notations and terminology. We use the axiom systems to provide 
a consequence relation.

We start with the following axiomatizations of Rt and RT.

Definition 2.1 (Yang (2013)) 
(i) Rt consists of the following axiom schemes and rules:
A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. (φ∧(ψ∨χ))→((φ∧ψ)∨(φ∧χ))  (∧∨-distributivity, ∧∨-D)
A7. φ ↔ (t → φ)  (push and pop, PP)
A8. (φ → ψ) → ((ψ → χ) → (φ → χ))  (suffixing, SF)
A9. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ)  (residuation, RE)
A10. (φ → (φ → ψ)) → (φ → ψ)  (contraction, CR)
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ, ψ ⊢ φ ∧ ψ (adjunction, adj).
(ii) RT is an axiomatic expansion of Rt with constant F, and its 

corresponding axiom scheme:
A11. F → φ.

Note that φ → ψ can be defined as ～(φ & ～ψ) (df4) in L 
(∈ {Rt, RT}). Note also that T is defined as ~F in RT. 



Routley-Meyer semantics for R 441

Proposition 2.2 (i) L (∈ {Rt, RT}) proves: 
(1) (φ & (ψ & χ)) ↔ ((φ & ψ) & χ)  (&-associativity, AS)
(2) (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
(3) φ → (φ & φ)  (contraction2, CR2)
(4) (φ ∧ ψ) → (φ & ψ)
(5) (φ & t) ↔ φ

(6) (φ → ～φ) → ～φ  (reductio, RD)
(7) (φ → ψ) → (～ψ → ～φ)  (contraposition, CP)
(8) ～～φ ↔ φ  (double negation, DN).
(ii) RT proves:
(1) φ → T. 

Proof: (i) For (1) to (4), see Anderson & Belnap (1975). 
The left-to-right direction of (5) follows from A8, df2, A2, and 

A10. For the right-to-left direction of (5), let (φ & t) → (φ & t) 
by A1. Then, we have t → (φ → (φ & t)) by A9 and (2); 
therefore, φ → (φ & t) by A1, df1, and (mp).

(6) follows from A10 and df1.
(7) follows from A8 and df1.
The left-to-right direction of (8) follows from (5), df2, A2, and 

df3. For the right-to-left direction of (8), let (φ → f) → (φ →

f) by A1. Then, we obtain φ → ((φ → f) → f) by A9 and (2); 
therefore, φ → ~~φ by df1. 

(ii) (1) follows from A11, (i) (7), and (mp). □

Note that the system R0 requires (i) (6) to (8) in Proposition 2 
as the axioms for negation (see Dunn (1986)). Thus, we can say 
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that all the negation axioms for R0 are provable in Rt and RT.
A theory over L (∈ {Rt, RT}) is a set T of formulas. A proof 

in a theory T over L is a sequence of formulas whose each 
member is either an axiom of L or a member of T or follows 
from some preceding members of the sequence using the two 
rules in Definition 2.1. T ⊢ φ, more exactly T ⊢L φ, means 
that φ is provable in T w.r.t. L, i.e., there is an L-proof of φ in 
T. The relevant deduction theorem (RDTt) for L is as follows:

Proposition 2.3 (Meyer, Dunn, & Leblanc (1976)) Let T be a 
theory, and φ, ψ formulas.

(RDTt) T ∪ {φ} ⊢ ψ if and only if (iff) T ⊢ φt → ψ.

For convenience, “～”, “∧”, “∨”, and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should make their meaning clear.

The algebraic counterpart of L is the class of L-algebras. Let 
xt := x ∧ t. They are defined as follows.

Definition 2.4 (i) A pointed commutative residuated distributive 
lattice is a structure A = (A, t, f, ∧, ∨, *, →) such that:

(Ⅰ) (A, ∧, ∨) is a distributive lattice.
(Ⅱ) (A, *, t) is a commutative monoid.
(Ⅲ) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A  

(residuation).
(ii) A pointed bounded commutative residuated distributive lattice 

is a pointed commutative residuated distributive lattice 
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satisfying:
(I’) (A, ∧, ∨, ⊤, ⊥) is a bounded distributive lattice, where 
⊤ and ⊥ are top and bottom elements.

(iii) (Dunn-algebras, Anderson & Belnap (1975), Anderson, 
Belnap, & Dunn (1992)) A Dunn-algebra is a pointed 
commutative residuated distributive lattice satisfying:

(IV) x ≤ x * x  (contraction).
(V) (x → f) → f ≤ x   (double negation elimination).

(iv) (RT-algebras) An RT-algebra is a Dunn-algebra satisfying (I’). 

We call Dunn-algebras Rt-algebras because the class of 
Dunn-algebras characterizes the system Rt. Note that 
Dunn-algebras are also called De Morgan monoids. We further 
call all of Rt- and RT-algebras L-algebras.

Additional unary and binary operations are defined as in Sect. 
2.1.

The class of all L-algebras is a variety which will be denoted 
by L.

Definition 2.5 (Evaluation) Let A be an algebra. An 
A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 
v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨
v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(f) = f, and hence v(~φ) = ~v
(φ) and v(t) = t, (and v(F) = ⊥, and hence v(T) = ⊤ w.r.t. RT).

Definition 2.6 (Cintula (2006)) Let A be an L-algebra, T a 
theory, φ a formula, and K a class of L-algebras.
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(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology (or 
A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 
for each φ ∈ T. By Mod(T, A), we denote the class of 
A-models of T.

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪
{φ}, A) for each A ∈ K.

Definition 2.7 (L-algebra) Let A, T, and φ be as in Definition 
2.6. A is an L-algebra iff whenever φ is L-provable in T (i.e. T 
⊢L φ), it is a semantic consequence of T w.r.t. the set {A} (i.e. 
T⊨ φ), A an L-algebra. By MOD(L), we denote the class of 
L-algebras. Finally, we write T ⊨L φ in place of T ⊨MOD(L) φ.

Note that since each condition for the L-algebra has a form of 
equation or can be defined in equation (exercise), it can be 
ensured that the class of all L-algebras is a variety.

We first show that classes of provably equivalent formulas form 
an L-algebra. Let T be a fixed theory over L (∈ {Rt, RT}). For 
each formula φ, let [φ]T be the set of all formulas ψ such that T 
⊢L φ ↔ ψ (formulas T-provably equivalent to φ). AT is the set 
of all the classes [φ]T. We define that [φ]T → [ψ]T = [φ → ψ]T, 
[φ]T * [ψ]T = [φ & ψ]T, [φ]T ∧ [ψ]T = [φ ∧ ψ]T, [φ]T ∨
[ψ]T = [φ ∨ ψ]T, t = [t]T, f = [f]T, (and ⊤ = [T]T and ⊥ = 
[F]T w.r.t. RT.) By AT, we denote this algebra.
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Proposition 2.8 For T a theory over L, AT is an L-algebra.

Proof: For the fact that AT (T over Rt) is an Rt-algebra, see 
Proposition 2.8 in Yang (2012). In order to show that AT (T over 
RT) is an R⊤-algebra, we just note that: [φ]T ≤ [T]T iff T ⊢R

T 
φ ↔ (φ ∧ T) iff T ⊢R

T φ → T and [F]T ≤ [φ]T iff T ⊢R
T F 

↔ (φ ∧ F) iff T ⊢R
T F → φ. Thus, it is an R⊤-algebra. □

Theorem 2.9 (Strong completeness) Let T be a theory, and φ a 
formula. T ⊢L φ iff T ⊨L φ.

Proof: The left-to-right direction follows from definition. The 
right-to-left direction is as follows: from Proposition 2.8, we 
obtain AT ∈ MOD(L), and for AT-evaluation v defined as v(ψ) = 
[ψ]T, it holds that v ∈ Mod(T, AT). Thus, since from T ⊨L φ 

we obtain that [φ]T = v(φ) ≥ t, T ⊢L t → φ. Then, since T ⊢
L t, by (mp) T ⊢L φ, as required. □

3. Routley-Meyer semantics for two versions of R

Here, we consider Routley-Meyer semantics for L (∈ {Rt, RT}).
Following Anderson, Belnap, & Dunn (1992), Dunn (1986), and 

Dunn & Hardegree (2001), calling relevant model structures 
Routley-Meyer (RM) frames, we define an (RM) frame. A frame 
is a structure S = (U, ⊑, R, Z), where (U, ⊑, R, Z) is a left 
assertional frame2) such that the following definitions and 

 2) That is, U is a set, Z (⊆ U) is a left lower identity (Z ∘ A ⊆ A) 



Eunsuk Yang446

postulates hold:3) (ζ ∈ Z) 

df5. α ⊑ β := ∃ζ(Rζαβ)
df6. R2αβγδ := ∃χ(Rαβχ & Rχγδ)
df7. R2α(βγ)δ := ∃χ(Rαχδ & Rβγχ)

(W.r.t. the following postulates, just for convenience, to represent 
some ζ we take 0, which Routley and Meyer take in their 
semantics. Note that 0, by which we represent some ζ (∈ Z), 
itself is a member of Z, i.e., 0 ∈ Z.4))

p0. Rαβγ and α' ⊑ α imply Rα'βγ (monotonicity)
p1. R0αα

p2. R2αβγδ ⇒ R2α(βγ)δ
p3. Rαβγ ⇒ Rβαγ

satisfying the following lli
(lli)  ∃ζ, ∈ Z, (Rζαβ)  iff  α ⊑ β,
R ⊆ U3, and ⊑ is a partial-order satisfying:
Rαβγ  & α' ⊑ α  imply  Rα'βγ,
Rαβγ  & β' ⊑ β  imply  Rαβ'γ,
Rαβγ  & γ' ⊑ γ  imply  Rαβγ'.
More exactly to understand a left assertional frame, see Dunn & Hardegree 
(2001). Note that U is expressed as K in Dunn (1986) (as well as in 
Routley & Meyer (1972; 1973); and that, for convenience, we take a left 
lower identity instead of a right lower one, which Dunn and Hardegree take 
in their (2001).

 3) Note that we take df5 for the modal character of E (see Anderson, Belnap, 
& Dunn (1992)).

 4) Often, in proofs of Sects. 4 and 5, by 0 we shall also ambiguously 
represent some ζ, if we do not need distinguish them, but context should 
determine what is intended.



Routley-Meyer semantics for R 447

p4. Rααα (idempotence) 

Note that the system R0 does not have propositional constants t 
and f and so the negation ~ is not definable in R0. Thus, for R0 
we need not only the postulates p0 to p4, but also 

p5. Rαβγ ⇒ Rαγ*β* and
p6. α** = α  (see Dunn (1986)).

As the results below will show, it suffices to have the 
postulates p0 to p4 for L (∈ {Rt, RT}). Following Dunn (and 
Hardegree) (2000) (and (2001)), we regard U as a set of “states 
of information,” and for α, β ∈ U, α ⊑ β means that the 
information of α is included in that of β.

By a model for L, we mean a structure M = (U, ⊑, R, Z, 
⊨), where (U, ⊑, R, Z) is a frame and ⊨ is a relation from U 
to sentences of L (∈ {Rt, RT}) satisfying the following 
conditions: 

(Atomic Hereditary Condition (AHC))
for a propositional variable p, if α ⊨ p and α ⊑ β, then β ⊨ p;

(Evaluation Clauses (EC)) for formulas φ, ψ

(∧) α ⊨ φ ∧ ψ   iff   α ⊨ φ and α ⊨ ψ;
(∨) α ⊨ φ ∨ ψ   iff   α ⊨ φ or α ⊨ ψ;
(→) α ⊨ φ → ψ   iff   for all β, γ ⊒ α, if Rαβγ and β ⊨

φ, then γ ⊨ ψ.
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((F) α ⊨ F never for RT.)

A formula φ is true on v at α of U just in case α ⊨ φ; φ is 
verified on M in case ζ (especially 0), ∈ Z, ⊨ φ; φ entails ψ 

on M in case ∀χ ∈ U, if χ ⊨ φ, then χ ⊨ ψ; φ L-entails ψ 

just in case φ entails ψ in every model; and φ is L-valid in a 
frame S just in case it is verified in all evaluations therein. Let 
Σ be the class of frames. A sentence φ is L-valid, in symbols 
⊨L φ, iff ∀S ∈ Σ, φ is L-valid in S.

Following Anderson, Belnap, & Dunn (1992) and Dunn (1986), 
we give the soundness for L. To prove it, we need the 
Verification Lemma below. First, by an induction on φ, we can 
easily prove the following.

Lemma 3.1 (Hereditary Condition (HC)) For any formula φ, if 
α ⊨ φ and α ⊑ β, then β ⊨ φ.

Since w.r.t. the connectives ∧, ∨, →, we have the same 
evaluations as in Anderson, Belnap, & Dunn (1992), Dunn (1986), 
Routley & Meyer (1973), we can use the Verification Lemma in 
them. Thus,

 
Lemma 3.2 (Verification Lemma) φ entails ψ on v only if φ →

ψ is verified, i.e., true at ζ (∈ Z), on v. Thus, φ entails ψ in a 
given model M, = (U, ⊑, R, Z, ⊨), only if φ → ψ is L-valid 
in the model; that is, for every χ (∈ U) if χ ⊨ φ then χ ⊨

ψ only if ζ ⊨ φ → ψ. And φ L-entails ψ only if φ → ψ is 
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L-valid.

Proof: It is proved by Lemmas 2 and 3 in Routley & Meyer 
(1973) and definitions. (Using Lemma 1, we can also prove this, 
see the Verification Lemma in Anderson, Belnap, & Dunn (1992), 
Dunn (1986).) □

Let ⊢L φ be the theoremhood of φ in L. We note that each 
postulate was used in Anderson, Belnap, & Dunn (1992) and 
Dunn (1986). Thus, the soundness for L is immediate. 

Proposition 3.3 (Soundness) If ⊢L φ, then ⊨L φ.

Proof: We just prove that each instance of the axiom schemes A7 
and A11 is valid in all frames, i.e., L-valid. For the other cases, 
see Dunn (1986).

For A7, it suffices by Lemma 3.2 (i) to assume α ⊨ φ and 
show α ⊨ t → φ, and (ii) to assume α ⊨ t → φ and show α 

⊨ φ. To show these two, we first note that we obtain the 
postulate (p7) Rα0α using p1 and p5.5) Based on p7, we prove 
(i) and (ii). For (i), assume α ⊨ φ. Then, we obtain α ⊨ t →
φ using (→) and p7. For (ii), assume α ⊨ t → φ. Since Rα0α 

and 0 ⊨ t, we obtain α ⊨ φ by (→).
For A11, it suffices by Lemma 3.2 to assume that α ⊨ F and 

show α ⊨ φ. We may instead show that α ⊭ F or α ⊨ φ. 
Since by (F) α ⊨ F does not hold, it is obvious that α ⊭ F. □

 5) The postulate p7 was introduced in Routley & Meyer (1972).
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We give the completeness for L by using the well-known 
Henkin-style proofs for modal logic, but with prime theories in 
place of maximal theories. To do this, we define some theories. 
We interpret ⊢L as the deducibility consequence relation of the 
logic L. By an L-theory, we mean a set Γ of sentences closed 
under deducibility, i.e., closed under (mp) and (adj); by a prime 
L-theory, a theory Γ such that if φ ∨ ψ ∈ Γ, then φ ∈ Γ or 
ψ ∈ Γ; and by a trivial L theory, the entire set of sentences of 
L. As Dunn states in Remark 4 in Dunn (2000), we note that an 
L-theory Γ contains all of the theorems of L. Thus it is what has 
been called a “regular theory” in the relevance logic literature. 
That is, by an L-theory we mean a regular L-theory. This means 
that Γ is never empty. In the results below, there is no role 
either for trivial L theories. Hence, by a “L theory” we mean a 
non-trivial one.

Let a canonical L-frame be a structure S = (Ucan, ⊑can, Rcan, 
Zcan), where ⊑can is an information order on Ucan, Zcan is a set of 
any prime L theory, i.e., ζcan (∈ Zcan), Zcan ⊆ Ucan, Ucan is the 
set of prime L theories extending ζcan, Rcan is R below restricted 
to Ucan,

(1) Rαβγ iff for any formula φ, ψ of L, if φ → ψ ∈ α and φ 

∈ β, then ψ ∈ γ.

We call a frame fitting for L if for each axiom scheme of L the 
corresponding semantical postulate holds.

As we mentioned above, we take the ideas of proofs from the 
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Henkin-style completeness proofs. Thus, note that the base 0can, 
i.e., 0, among ζcan (∈ Zcan), is constructed as a prime L-theory 
that excludes nontheorems of L, i.e., excludes φ such that ⊬L φ. 
Note also that in proofs below, by 0, i.e., 0can, we often represent 
ζcan (as well as 0) if context can clarify what is intended. The 
partial orderedness of a canonical L-frame depends on * restricted 
on Ucan. Then, first, it is obvious that

Proposition 3.4 A canonical L-frame is partially ordered.

Proposition 3.5 The canonically defined L-frame is a frame 
fitting for L.

Proof: It suffices to note that to prove the postulates it is enough 
for us to point out Theorem 1 of Sects. 48.3 and 48.6 in 
Anderson, Belnap, & Dunn (1992), Lemma 6 in Routley & 
Meyer (1972), and Lemma 13 in Routley & Meyer (1973). □

Next, we need to define an appropriate relation ⊨ on S, = 
(Ucan, ⊑can, Rcan, Zcan). We define it to be that

α ⊨ φ  iff  φ ∈ α. 

However, we need to verify that this satisfies AHC and EC 
above. Note that since the positive part of L satisfies Definition 1 
of Sect. 42.1 in Anderson, Belnap, & Dunn (1992), we can 
directly use Fact 1 and Fact 2 of Sect. 48.3 in Anderson, Belnap, 
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& Dunn (1992), which are considered for R0+, and thus we can 
use Theorem 2 of the same section.

Proposition 3.6 The canonically defined (Ucan, ⊑can, Rcan, Zcan, 
⊨) is indeed an L model.

Proof: AHC and the clauses (∧), (∨), and (→) for EC are by 
Theorem 2 of Sect. 48.3 in Anderson, Belnap, & Dunn (1992). 
For (F) in RT, we need to show α ⊭ F. This is immediate 
because α is a non-trivial theory and thus F ∉ α. □

Thus, (Ucan, ⊑can, Rcan, Zcan, ⊨) is an L model. So, since, by 
construction, 0 excludes our chosen nontheorem φ and the 
canonical definition of ⊨ agrees with membership, we can state 
that for each nontheorem φ of L, there is an L model A in 
which φ is not 0 ⊨ φ. It gives us the (weak) completeness for 
L as follows.

Theorem 3.7 (Weak Completeness) If ⊨L φ, then ⊢L φ.

Next, let us prove the strong completeness for L. As R0+ in 
Anderson, Belnap, & Dunn (1992), we define φ to be an L 
consequence of a set of formulas γ iff for every L model, 
whenever α ⊨ ψ for every ψ ∈ Γ, α ⊨ φ, for (not just 0 but) 
all α ∈ U. Let us say that φ is L deducible from Γ iff φ is in 
every L theory containing Γ. Then,
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Proposition 3.8 If Γ ⊬L φ, then there is a prime theory ζ such 
that Γ ⊆ ζ and φ ∉ ζ.

Proof: Take an enumeration {φn: n ∈ ω} of the well-formed 
formulas of L. We define a sequence of sets by induction as 
follows:

ζ0 = {φ': Γ ⊬L φ'}.
ζi+1 = Th(ζi∪{φi+1})   if it is not the case that ζi, φi+1 ⊢L φ,

ζi      otherwise.   

Let ζ be the union of all these ζn's. It is easy to see that ζ is a 
theory not containing φ. Also we can show that it is a prime.

Suppose toward contradiction that ψ ∨ χ ∈ ζ and ψ, χ ∉ ζ. 
Then the theories obtained from ζ ∪ ψ and ζ ∪ χ must both 
contain φ. It follows that there is a conjunction of members of ζ 

ζ' such that ζ' ∧ ψ ⊢L φ and ζ' ∧ χ ⊢L φ. Note that if ⊢L 
φt → ψ, then φ ⊢L ψ. Then, using Proposition 2.3, we can 
obtain (ζ' ∧ ψ) ∨ (ζ' ∧ χ) ⊢L φ.; therefore, ζ' ∧ (ψ ∨ χ) 
⊢L φ by the prefixing (as a theorem), A6, and (mp). From this 
we get that φ ∈ ζ, which is contrary to our supposition. □

Thus, by using Propositions 3.6 and 3.8, we can show its strong 
completeness as follows.

Theorem 3.9 (Strong Completeness)  If Γ⊨L φ, then Γ⊢L φ.
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4. Concluding remark

We investigated Routley-Meyer semantics for two versions of 
R, i.e., Rt and RT. We proved soundness and completeness 
theorems. We can also consider two versions of RM (R with 
mingle), i.e., RMt and RMT, and provide Routley-Meyer semantics 
for these systems. We leave its investigation to the interested 
reader.
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R 위한 루트리-마미어 의미론
양 은 석

글에서 우리는 연관 논리 R의 두 버전을 위한 루트리-마이어 

의미론을 다룬다. 이를 위하여 먼저 R의 두 버전 Rt와 RT를 그리

고 그것들에 상응하는 대수적 의미론을 소개한다. 다음으로 이 체

계들을 위한 루트리-마미어 의미론을 제공한다. 

주요어: 루트리-마이어 의미론, 크립키형 의미론, 대수적 의미론, R, 
R0, Rt, RT.


