Routley-Meyer semantics for R*

Eunsuk Yang

[Abstract] This paper deals with Routley-Meyer semantics for two versions of ${\bf R}$ of Relevance. For this, first, we introduce two systems ${\bf R}^t$, ${\bf R}^T$ and their corresponding algebraic semantics. We next consider Routley-Meyer semantics for these systems.

[Key Words] Routley-Meyer semantics, algebraic semantics, Kripke-style semantics, R, R^0 , R^t , R^T .

^{: 2015.06.07} 심사 및 수정완료일: 2015.09.25 게재확정일: 2015.10.12

^{*} This research was supported by "Research Base Construction Fund Support Program" funded by Chonbuk National University in 2015.

1. Introduction

Kripke-style semantics are known as binary relational semantics for modal and intuitionistic logics (Kripke (1963; 1965a; 1965b). But, in general, this semantics does not work for relevance logics (see Dunn (1986)). Because of this, Routley and Meyer introduced the so-called Routley-Meyer semantics for relevance logics (see Routley and Meyer (1972; 1973)). This semantics is a generalization of Kripke-style semantics to ternary relational semantics. So far, many logicians have had difficulties in providing Kripke-style semantics for relevance logics. Recently, Yang provided Kripke-style semantics (as well as algebraic semantics) for **R** of Relevance (Yang (2014)).

The aim of this paper is to provide Routley-Meyer semantics for \mathbf{R} . To some readers this seems strange because, as mentioned above, Routley-Meyer semantics is known to us as semantics for relevance logics, in particular for \mathbf{R} . However, as Yang noted in his (2013), there are at least three versions of \mathbf{R} . One is the system \mathbf{R}^0 that has no propositional constants; another is the system \mathbf{R}^t that has propositional constants \mathbf{t} , \mathbf{f} ; the other is the system \mathbf{R}^T that has propositional constants \mathbf{t} , \mathbf{f} , \mathbf{T} , \mathbf{F} . The well-known Routley-Meyer semantics for \mathbf{R} is that for \mathbf{R}^0 but not for \mathbf{R}^t and \mathbf{R}^T (see Dunn (1986)).

Here, we introduce Routley-Meyer semantics for the other two versions of \mathbf{R} , i.e., \mathbf{R}^t and \mathbf{R}^T . One interesting fact is that Routley-Meyer semantics, which will be introduced here, does not require star operation * for negation. Note that, in general,

Routley-Meyer semantics requires that operation for negation. Thus, our semantics can be regarded as *Routley-Meyer semantics* without star operation *.

This paper is organized as follows. In Sect. 2, we introduce the systems \mathbf{R}^t and \mathbf{R}^T , along with their corresponding algebraic semantics. In Sect. 3, we provide Routley-Meyer semantics for these systems. We prove that \mathbf{R}^t and \mathbf{R}^T are sound and complete with respect to (w.r.t.) such semantics.

For convenience, we adopt the notations and terminology similar to those in Anderson, Belnap, & Dunn (1992), Dunn (1986), Dunn & Hardegree (2001), Yang (2013, 2014), and assume reader familiarity with them (together with results found therein).

2. Two versions of R: R^t and R^T

In this section, we introduce two versions of \mathbf{R} $\mathbf{R}^{\mathbf{t}}$ and $\mathbf{R}^{\mathbf{T}}$. We base $\mathbf{R}^{\mathbf{t}}$ on a countable propositional language with formulas Fm built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow , \wedge , \vee , and a constant \mathbf{f} , with defined connectives: \mathbf{I}

df1.
$$\sim \varphi := \varphi \rightarrow \mathbf{f}$$

df2. $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
df3. $\varphi \& \psi := \sim (\varphi \rightarrow \sim \psi)$.

 $^{^{1)}}$ Note that, while \wedge is the extensional conjunction connective, & is the intensional conjunction one.

The constant \mathbf{t} is defined as $\mathbf{f} \to \mathbf{f}$. We moreover define $\phi_t := \phi \wedge \mathbf{t}$. For the remainder, we shall follow the customary notations and terminology. We use the axiom systems to provide a consequence relation.

We start with the following axiomatizations of \mathbf{R}^{t} and \mathbf{R}^{T} .

Definition 2.1 (Yang (2013))

(i) Rt consists of the following axiom schemes and rules:

A1.
$$\phi \rightarrow \phi$$
 (self-implication, SI)

A2.
$$(\phi \land \psi) \rightarrow \phi$$
, $(\phi \land \psi) \rightarrow \psi$ (\land -elimination, \land -E)

A3.
$$((\phi \rightarrow \psi) \land (\phi \rightarrow \chi)) \rightarrow (\phi \rightarrow (\psi \land \chi))$$
 (\land -introduction, \land -I)

A4.
$$\phi \rightarrow (\phi \lor \psi), \quad \psi \rightarrow (\phi \lor \psi) \quad (\lor \text{-introduction}, \lor \text{-I})$$

A5.
$$((\phi \rightarrow \chi) \land (\psi \rightarrow \chi)) \rightarrow ((\phi \lor \psi) \rightarrow \chi) \quad (\lor \text{-elimination}, \lor \text{-E})$$

A6.
$$(\phi \land (\psi \lor \chi)) \rightarrow ((\phi \land \psi) \lor (\phi \land \chi))$$
 $(\land \lor -distributivity, \land \lor -D)$

A7.
$$\phi \leftrightarrow (t \rightarrow \phi)$$
 (push and pop, PP)

A8.
$$(\phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\phi \rightarrow \chi))$$
 (suffixing, SF)

A9.
$$(\varphi \rightarrow (\psi \rightarrow \chi)) \leftrightarrow ((\varphi \& \psi) \rightarrow \chi)$$
 (residuation, RE)

A10.
$$(\phi \rightarrow (\phi \rightarrow \psi)) \rightarrow (\phi \rightarrow \psi)$$
 (contraction, CR)

$$\phi \rightarrow \psi, \ \phi \vdash \psi \text{ (modus ponens, mp)}$$

$$\phi$$
, $\psi \vdash \phi \land \psi$ (adjunction, adj).

(ii) $\mathbf{R}^{\mathbf{T}}$ is an axiomatic expansion of $\mathbf{R}^{\mathbf{t}}$ with constant \mathbf{F} , and its corresponding axiom scheme:

A11.
$$\mathbf{F} \rightarrow \Phi$$
.

Note that $\Phi \to \psi$ can be defined as $\sim (\Phi \& \sim \psi)$ (df4) in L ($\in \{\mathbf{R}^t, \mathbf{R}^T\}$). Note also that T is defined as $\sim \mathbf{F}$ in \mathbf{R}^T .

Proposition 2.2 (i) L ($\in \{\mathbf{R}^t, \mathbf{R}^T\}$) proves:

(1)
$$(\phi \& (\psi \& \chi)) \leftrightarrow ((\phi \& \psi) \& \chi)$$
 (&-associativity, AS)

(2)
$$(\phi \& \psi) \rightarrow (\psi \& \phi)$$
 (&-commutativity, &-C)

(3)
$$\phi \rightarrow (\phi \& \phi)$$
 (contraction2, CR2)

(4)
$$(\phi \land \psi) \rightarrow (\phi \& \psi)$$

(5)
$$(\phi \& t) \leftrightarrow \phi$$

(6)
$$(\phi \rightarrow \sim \phi) \rightarrow \sim \phi$$
 (reductio, RD)

(7)
$$(\varphi \rightarrow \psi) \rightarrow (\sim \psi \rightarrow \sim \varphi)$$
 (contraposition, CP)

(8)
$$\sim \sim \varphi \leftrightarrow \varphi$$
 (double negation, DN).

- (ii) $\mathbf{R}^{\mathbf{T}}$ proves:
- (1) $\phi \rightarrow T$.

Proof: (i) For (1) to (4), see Anderson & Belnap (1975).

The left-to-right direction of (5) follows from A8, df2, A2, and A10. For the right-to-left direction of (5), let $(\phi \& t) \rightarrow (\phi \& t)$ by A1. Then, we have $t \rightarrow (\phi \rightarrow (\phi \& t))$ by A9 and (2); therefore, $\phi \rightarrow (\phi \& t)$ by A1, df1, and (mp).

- (6) follows from A10 and df1.
- (7) follows from A8 and df1.

The left-to-right direction of (8) follows from (5), df2, A2, and df3. For the right-to-left direction of (8), let $(\phi \rightarrow \mathbf{f}) \rightarrow (\phi \rightarrow \mathbf{f})$ by A1. Then, we obtain $\phi \rightarrow ((\phi \rightarrow \mathbf{f}) \rightarrow \mathbf{f})$ by A9 and (2); therefore, $\phi \rightarrow \sim \phi$ by df1.

(ii) (1) follows from A11, (i) (7), and (mp).
$$\square$$

Note that the system \mathbb{R}^0 requires (i) (6) to (8) in Proposition 2 as the axioms for negation (see Dunn (1986)). Thus, we can say

that all the negation axioms for R^0 are provable in R^t and R^T .

A theory over L ($\in \{\mathbf{R}^t, \mathbf{R}^T\}$) is a set T of formulas. A *proof* in a theory T over L is a sequence of formulas whose each member is either an axiom of L or a member of T or follows from some preceding members of the sequence using the two rules in Definition 2.1. T $\vdash \varphi$, more exactly T $\vdash_L \varphi$, means that φ is *provable* in T w.r.t. L, i.e., there is an L-proof of φ in T. The relevant deduction theorem (RDT_t) for L is as follows:

Proposition 2.3 (Meyer, Dunn, & Leblanc (1976)) Let T be a theory, and Φ , Ψ formulas.

(RDT_t) T
$$\cup$$
 { ϕ } \vdash ψ if and only if (iff) T \vdash $\phi_t \rightarrow \psi$.

For convenience, " \sim ", " \wedge ", " \vee ", and " \rightarrow " are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

The algebraic counterpart of L is the class of *L-algebras*. Let $x_t := x \wedge t$. They are defined as follows.

Definition 2.4 (i) A pointed commutative residuated distributive lattice is a structure $A = (A, t, f, \land, \lor, *, \rightarrow)$ such that:

- (I) (A, \land, \lor) is a distributive lattice.
- (II) (A, *, t) is a commutative monoid.
- (III) $y \le x \rightarrow z$ iff $x * y \le z$, for all x, y, $z \in A$ (residuation).
- (ii) A pointed bounded commutative residuated distributive lattice is a pointed commutative residuated distributive lattice

satisfying:

- (I') (A, \wedge , \vee , \top , \bot) is a bounded distributive lattice, where \top and \bot are top and bottom elements.
- (iii) (Dunn-algebras, Anderson & Belnap (1975), Anderson, Belnap, & Dunn (1992)) A *Dunn-algebra* is a pointed commutative residuated distributive lattice satisfying:
 - (IV) $x \le x * x$ (contraction).
 - (V) $(x \rightarrow f) \rightarrow f \le x$ (double negation elimination).
- (iv) $(R^T$ -algebras) An R^T -algebra is a Dunn-algebra satisfying (I').

We call Dunn-algebras R^t -algebras because the class of Dunn-algebras characterizes the system R^t . Note that Dunn-algebras are also called De Morgan monoids. We further call all of R^t - and R^T -algebras L-algebras.

Additional unary and binary operations are defined as in Sect. 2.1.

The class of all L-algebras is a variety which will be denoted by ${\sf L}$.

Definition 2.5 (Evaluation) Let \mathcal{A} be an algebra. An \mathcal{A} -evaluation is a function $v: FOR \to \mathcal{A}$ satisfying: $v(\varphi \to \psi) = v(\varphi) \to v(\psi)$, $v(\varphi \land \psi) = v(\varphi) \land v(\psi)$, $v(\varphi \lor \psi) = v(\varphi) \lor v(\psi)$, $v(\varphi \& \psi) = v(\varphi) * v(\psi)$, v(f) = f, and hence $v(\neg \varphi) = \neg v(\varphi)$ and v(f) = f, (and v(f) = f). And hence v(T) = f w.r.t. \mathbf{R}^T).

Definition 2.6 (Cintula (2006)) Let \mathcal{A} be an L-algebra, T a theory, Φ a formula, and K a class of L-algebras.

- (i) (Tautology) Φ is a *t-tautology* in A, briefly an A-tautology (or A-valid), if $v(\Phi) \geq t$ for each A-evaluation v.
- (ii) (Model) An A-evaluation v is an A-model of T if $v(\varphi) \ge t$ for each $\varphi \in T$. By Mod(T, A), we denote the class of A-models of T.
- (iii) (Semantic consequence) Φ is a *semantic consequence* of T w.r.t. K, denoting by $T \models_{\mathsf{K}} \Phi$, if $\mathsf{Mod}(T, \mathcal{A}) = \mathsf{Mod}(T \cup \{\Phi\}, \mathcal{A})$ for each $\mathcal{A} \subseteq \mathsf{K}$.

Definition 2.7 (L-algebra) Let \mathcal{A} , T, and Φ be as in Definition 2.6. \mathcal{A} is an *L-algebra* iff whenever Φ is L-provable in T (i.e. T $\vdash_L \Phi$), it is a semantic consequence of T w.r.t. the set $\{\mathcal{A}\}$ (i.e. $T \vDash_{\{A\}} \Phi$), \mathcal{A} an L-algebra. By MOD(L), we denote the class of L-algebras. Finally, we write $T \vDash_L \Phi$ in place of $T \vDash_{MOD(L)} \Phi$.

Note that since each condition for the L-algebra has a form of equation or can be defined in equation (exercise), it can be ensured that the class of all L-algebras is a variety.

We first show that classes of provably equivalent formulas form an L-algebra. Let T be a fixed theory over L ($\in \{\mathbf{R}^t, \mathbf{R}^T\}$). For each formula Φ , let $[\Phi]_T$ be the set of all formulas Ψ such that T $\vdash_L \Phi \leftrightarrow \Psi$ (formulas T-provably equivalent to Φ). A_T is the set of all the classes $[\Phi]_T$. We define that $[\Phi]_T \to [\Psi]_T = [\Phi \to \Psi]_T$, $[\Phi]_T * [\Psi]_T = [\Phi \& \Psi]_T$, $[\Phi]_T \wedge [\Psi]_T = [\Phi \land \Psi]_T$, $[\Phi]_T \vee [\Psi]_T = [\Phi \lor \Psi]_T$, $[\Phi]_T \wedge [\Psi]_T = [\Phi \land \Psi]_T$, and $[\Psi]_T = [\Phi \lor \Psi]_T$, w.r.t. $[\Psi]_T = [\Psi]_T$ and $[\Psi]_T = [\Psi]_T$ w.r.t. $[\Psi]_T = [\Psi]_T$, we denote this algebra.

Proposition 2.8 For T a theory over L, A_T is an L-algebra.

Proof: For the fact that \mathbf{A}_T (T over \mathbf{R}^t) is an \mathbf{R}^t -algebra, see Proposition 2.8 in Yang (2012). In order to show that \mathbf{A}_T (T over \mathbf{R}^T) is an \mathbf{R}^T -algebra, we just note that: $[\Phi]_T \leq [T]_T$ iff $T \vdash_{\mathbf{R}}^T \Phi \leftrightarrow (\Phi \land T)$ iff $T \vdash_{\mathbf{R}}^T \Phi \to T$ and $[F]_T \leq [\Phi]_T$ iff $T \vdash_{\mathbf{R}}^T F \to \Phi$. Thus, it is an \mathbf{R}^T -algebra. \square

Theorem 2.9 (Strong completeness) Let T be a theory, and ϕ a formula. T $\vdash_L \phi$ iff T $\vDash_L \phi$.

Proof: The left-to-right direction follows from definition. The right-to-left direction is as follows: from Proposition 2.8, we obtain $\mathbf{A}_T \in \mathsf{MOD}(L)$, and for \mathbf{A}_T -evaluation v defined as $v(\psi) = [\psi]_T$, it holds that $v \in \mathsf{Mod}(T, \mathbf{A}_T)$. Thus, since from $T \models_L \varphi$ we obtain that $[\varphi]_T = v(\varphi) \geq t$, $T \vdash_L \mathbf{t} \to \varphi$. Then, since $T \vdash_L \mathbf{t}$, by (mp) $T \vdash_L \varphi$, as required. \square

3. Routley-Meyer semantics for two versions of R

Here, we consider Routley-Meyer semantics for L ($\subseteq \{R^t, R^T\}$). Following Anderson, Belnap, & Dunn (1992), Dunn (1986), and Dunn & Hardegree (2001), calling relevant model structures *Routley-Meyer (RM) frames*, we define an *(RM) frame*. A frame is a structure $S = (U, \sqsubseteq, R, Z)$, where (U, \sqsubseteq, R, Z) is a left assertional frame²⁾ such that the following definitions and

²⁾ That is, U is a set, Z (\subseteq U) is a left lower identity (Z \circ A \subseteq A)

postulates hold:3) ($\zeta \in Z$)

df5.
$$\alpha \subseteq \beta := \exists \zeta (R\zeta \alpha \beta)$$

df6. $R^2 \alpha \beta \gamma \delta := \exists \chi (R\alpha \beta \chi \& R\chi \gamma \delta)$
df7. $R^2 \alpha (\beta \gamma) \delta := \exists \chi (R\alpha \chi \delta \& R\beta \gamma \chi)$

(W.r.t. the following postulates, just for convenience, to represent some ζ we take θ , which Routley and Meyer take in their semantics. Note that θ , by which we represent some $\zeta \in \mathbb{Z}$, itself is a member of \mathbb{Z} , i.e., $\theta \in \mathbb{Z}^{(4)}$)

- p0. $R\alpha\beta\gamma$ and $\alpha' \subseteq \alpha$ imply $R\alpha'\beta\gamma$ (monotonicity)
- p1. **R0**αα
- p2. $R^2 \alpha \beta \gamma \delta \Rightarrow R^2 \alpha (\beta \gamma) \delta$
- p3. $R\alpha\beta\gamma \Rightarrow R\beta\alpha\gamma$

satisfying the following lli

(lli) $\exists \zeta$, \in Z, $(R\zeta \alpha \beta)$ iff $\alpha \sqsubseteq \beta$,

 $R \subseteq U^3$, and \sqsubseteq is a partial-order satisfying:

 $R\alpha\beta\gamma$ & $\alpha' \sqsubseteq \alpha$ imply $R\alpha'\beta\gamma$,

 $R\alpha\beta\gamma$ & $\beta' \subseteq \beta$ imply $R\alpha\beta'\gamma$,

 $R\alpha\beta\gamma$ & $\gamma' \sqsubseteq \gamma$ imply $R\alpha\beta\gamma'$.

More exactly to understand a left assertional frame, see Dunn & Hardegree (2001). Note that U is expressed as K in Dunn (1986) (as well as in Routley & Meyer (1972; 1973); and that, for convenience, we take a left lower identity instead of a right lower one, which Dunn and Hardegree take in their (2001).

- ³⁾ Note that we take df5 for the modal character of E (see Anderson, Belnap, & Dunn (1992)).
- ⁴⁾ Often, in proofs of Sects. 4 and 5, by θ we shall also ambiguously represent some ζ , if we do not need distinguish them, but context should determine what is intended.

(idempotence)

Note that the system \mathbf{R}^0 does not have propositional constants \mathbf{t} and \mathbf{f} and so the negation \sim is not definable in \mathbf{R}^0 . Thus, for \mathbf{R}^0 we need not only the postulates p0 to p4, but also

p5.
$$R\alpha\beta\gamma \Rightarrow R\alpha\gamma^*\beta^*$$
 and p6. $\alpha^{**} = \alpha$ (see Dunn (1986)).

As the results below will show, it suffices to have the postulates p0 to p4 for L ($\in \{\mathbf{R}^t, \mathbf{R}^T\}$). Following Dunn (and Hardegree) (2000) (and (2001)), we regard U as a set of "states of information," and for α , $\beta \in U$, $\alpha \sqsubseteq \beta$ means that the information of α is included in that of β .

By a *model* for L, we mean a structure $\mathbf{M} = (U, \subseteq, R, Z, E)$, where (U, \subseteq, R, Z) is a frame and E is a relation from U to sentences of L $(\in \{\mathbf{R}^t, \mathbf{R}^T\})$ satisfying the following conditions:

(Atomic Hereditary Condition (AHC))

for a propositional variable p, if $\alpha \models p$ and $\alpha \sqsubseteq \beta$, then $\beta \models p$;

(Evaluation Clauses (EC)) for formulas φ, ψ

- (\land) $\alpha \models \varphi \land \psi$ iff $\alpha \models \varphi$ and $\alpha \models \psi$;
- $(\vee) \quad \alpha \ \vDash \ \varphi \ \lor \ \psi \quad \text{iff} \quad \alpha \ \vDash \ \varphi \ \text{or} \ \alpha \ \vDash \ \psi;$
- $(\rightarrow)\quad \alpha \ \vDash \ \varphi \rightarrow \psi \quad \ \ \text{iff} \quad \ \ \text{for all} \ \beta, \ \gamma \ \sqsupseteq \ \alpha, \ \text{if} \ \ R\alpha\beta\gamma \ \ \text{and} \ \beta \ \vDash \\ \varphi, \ \ \text{then} \ \ \gamma \ \vDash \ \psi.$

$((\mathbf{F}) \quad \alpha \models \mathbf{F} \text{ never for } \mathbf{R}^{\mathsf{T}}.)$

A formula Φ is *true* on V at α of U just in case $\alpha \models \Phi$; Φ is *verified* on M in case ζ (especially θ), $\in Z$, $\models \Phi$; Φ *entails* Ψ on M in case $\forall \chi \in U$, if $\chi \models \Phi$, then $\chi \models \Psi$; Φ *L-entails* Ψ just in case Φ entails Ψ in every model; and Φ is *L-valid* in a frame S just in case it is verified in all evaluations therein. Let Σ be the class of frames. A sentence Φ is L-valid, in symbols $\models_L \Phi$, iff $\forall S \in \Sigma$, Φ is L-valid in S.

Following Anderson, Belnap, & Dunn (1992) and Dunn (1986), we give the soundness for L. To prove it, we need the Verification Lemma below. First, by an induction on ϕ , we can easily prove the following.

Lemma 3.1 (Hereditary Condition (HC)) For any formula ϕ , if $\alpha \models \phi$ and $\alpha \sqsubseteq \beta$, then $\beta \models \phi$.

Since w.r.t. the connectives \land , \lor , \rightarrow , we have the same evaluations as in Anderson, Belnap, & Dunn (1992), Dunn (1986), Routley & Meyer (1973), we can use the Verification Lemma in them. Thus,

Lemma 3.2 (Verification Lemma) φ entails ψ on v only if $\varphi \to \psi$ is verified, i.e., true at $\zeta \in Z$, on v. Thus, φ entails ψ in a given model \mathbf{M} , = (U, \sqsubseteq , R, Z, \vDash), only if $\varphi \to \psi$ is L-valid in the model; that is, for every $\chi \in U$ if $\chi \vDash \varphi$ then $\chi \vDash \psi$ only if $\zeta \vDash \varphi \to \psi$. And φ L-entails ψ only if $\varphi \to \psi$ is

L-valid.

Proof: It is proved by Lemmas 2 and 3 in Routley & Meyer (1973) and definitions. (Using Lemma 1, we can also prove this, see the Verification Lemma in Anderson, Belnap, & Dunn (1992), Dunn (1986).) \square

Let $\vdash_L \varphi$ be the theoremhood of φ in L. We note that each postulate was used in Anderson, Belnap, & Dunn (1992) and Dunn (1986). Thus, the soundness for L is immediate.

Proposition 3.3 (Soundness) If $\vdash_L \varphi$, then $\vDash_L \varphi$.

Proof: We just prove that each instance of the axiom schemes A7 and A11 is valid in all frames, i.e., L-valid. For the other cases, see Dunn (1986).

For A7, it suffices by Lemma 3.2 (i) to assume $\alpha \models \varphi$ and show $\alpha \models \mathbf{t} \to \varphi$, and (ii) to assume $\alpha \models \mathbf{t} \to \varphi$ and show $\alpha \models \varphi$. To show these two, we first note that we obtain the postulate (p7) Ra θ a using p1 and p5.5 Based on p7, we prove (i) and (ii). For (i), assume $\alpha \models \varphi$. Then, we obtain $\alpha \models \mathbf{t} \to \varphi$ using (\to) and p7. For (ii), assume $\alpha \models \mathbf{t} \to \varphi$. Since Ra θ a and $\theta \models \mathbf{t}$, we obtain $\alpha \models \varphi$ by (\to).

For A11, it suffices by Lemma 3.2 to assume that $\alpha \models \mathbf{F}$ and show $\alpha \models \varphi$. We may instead show that $\alpha \not\models \mathbf{F}$ or $\alpha \models \varphi$. Since by (\mathbf{F}) $\alpha \models \mathbf{F}$ does not hold, it is obvious that $\alpha \not\models \mathbf{F}$. \square

⁵⁾ The postulate p7 was introduced in Routley & Meyer (1972).

We give the completeness for L by using the well-known Henkin-style proofs for modal logic, but with prime theories in place of maximal theories. To do this, we define some theories. We interpret \vdash_L as the deducibility consequence relation of the logic L. By an *L-theory*, we mean a set Γ of sentences closed under deducibility, i.e., closed under (mp) and (adj); by a *prime L-theory*, a theory Γ such that if $\Phi \lor \psi \in \Gamma$, then $\Phi \in \Gamma$ or $\Psi \in \Gamma$; and by a *trivial L theory*, the entire set of sentences of L. As Dunn states in Remark 4 in Dunn (2000), we note that an L-theory Γ contains all of the theorems of L. Thus it is what has been called a "regular theory" in the relevance logic literature. That is, by an L-theory we mean a regular L-theory. This means that Γ is never empty. In the results below, there is no role either for trivial L theories. Hence, by a "L theory" we mean a non-trivial one.

Let a canonical L-frame be a structure $S = (U_{can}, \sqsubseteq_{can}, R_{can}, Z_{can})$, where \sqsubseteq_{can} is an information order on U_{can} , Z_{can} is a set of any prime L theory, i.e., ζ_{can} ($\subseteq Z_{can}$), $Z_{can} \subseteq U_{can}$, U_{can} is the set of prime L theories extending ζ_{can} , R_{can} is R below restricted to U_{can} ,

(1) Ra $\beta\gamma$ iff for any formula φ , ψ of L, if $\varphi \to \psi \in \alpha$ and $\varphi \in \beta$, then $\psi \in \gamma$.

We call a frame *fitting* for L if for each axiom scheme of L the corresponding semantical postulate holds.

As we mentioned above, we take the ideas of proofs from the

Henkin-style completeness proofs. Thus, note that the base θ_{can} , i.e., θ , among ζ_{can} (\in Z_{can}), is constructed as a prime L-theory that excludes nontheorems of L, i.e., excludes φ such that $\nvdash_L \varphi$. Note also that in proofs below, by θ , i.e., θ_{can} , we often represent ζ_{can} (as well as θ) if context can clarify what is intended. The partial orderedness of a canonical L-frame depends on * restricted on U_{can} . Then, first, it is obvious that

Proposition 3.4 A canonical L-frame is partially ordered.

Proposition 3.5 The canonically defined L-frame is a frame fitting for L.

Proof: It suffices to note that to prove the postulates it is enough for us to point out Theorem 1 of Sects. 48.3 and 48.6 in Anderson, Belnap, & Dunn (1992), Lemma 6 in Routley & Meyer (1972), and Lemma 13 in Routley & Meyer (1973).

Next, we need to define an appropriate relation \models on S, = $(U_{can}, \sqsubseteq_{can}, R_{can}, Z_{can})$. We define it to be that

$$a \models \varphi \text{ iff } \varphi \in a.$$

However, we need to verify that this satisfies AHC and EC above. Note that since the positive part of L satisfies Definition 1 of Sect. 42.1 in Anderson, Belnap, & Dunn (1992), we can directly use Fact 1 and Fact 2 of Sect. 48.3 in Anderson, Belnap,

& Dunn (1992), which are considered for \mathbf{R}^{0+} , and thus we can use Theorem 2 of the same section.

Proposition 3.6 The canonically defined (U_{can} , \sqsubseteq_{can} , R_{can} , Z_{can} , \models) is indeed an L model.

Proof: AHC and the clauses (\land) , (\lor) , and (\rightarrow) for EC are by Theorem 2 of Sect. 48.3 in Anderson, Belnap, & Dunn (1992). For **(F)** in $\mathbf{R}^{\mathbf{T}}$, we need to show $\alpha \not\models \mathbf{F}$. This is immediate because α is a non-trivial theory and thus $\mathbf{F} \not\in \alpha$. \square

Thus, $(U_{can}, \sqsubseteq_{can}, R_{can}, Z_{can}, \vDash)$ is an L model. So, since, by construction, θ excludes our chosen nontheorem φ and the canonical definition of \vDash agrees with membership, we can state that for each nontheorem φ of L, there is an L model A in which φ is not $\theta \vDash \varphi$. It gives us the (weak) completeness for L as follows.

Theorem 3.7 (Weak Completeness) If $\vdash_L \varphi$, then $\vdash_L \varphi$.

Next, let us prove the strong completeness for L. As \mathbf{R}^{0+} in Anderson, Belnap, & Dunn (1992), we define Φ to be an L consequence of a set of formulas γ iff for every L model, whenever $\alpha \vDash \psi$ for every $\psi \in \Gamma$, $\alpha \vDash \Phi$, for (not just θ but) all $\alpha \in U$. Let us say that Φ is L deducible from Γ iff Φ is in every L theory containing Γ . Then,

Proposition 3.8 If $\Gamma \nvdash_L \varphi$, then there is a prime theory ζ such that $\Gamma \subseteq \zeta$ and $\varphi \not\in \zeta$.

Proof: Take an enumeration $\{\varphi_n: n \in \omega\}$ of the well-formed formulas of L. We define a sequence of sets by induction as follows:

$$\begin{split} \zeta_0 &= \{ \varphi' \colon \Gamma \not\vdash_L \varphi' \}. \\ \zeta_{i+1} &= Th(\zeta_i \cup \{ \varphi_{i+1} \}) \quad \text{if it is not the case that } \zeta_i, \; \varphi_{i+1} \vdash_L \varphi, \\ \zeta_i &\quad \text{otherwise}. \end{split}$$

Let ζ be the union of all these ζ_n 's. It is easy to see that ζ is a theory not containing φ . Also we can show that it is a prime.

Suppose toward contradiction that $\psi \lor \chi \in \zeta$ and $\psi, \chi \not\in \zeta$. Then the theories obtained from $\zeta \cup \psi$ and $\zeta \cup \chi$ must both contain φ . It follows that there is a conjunction of members of ζ ζ' such that $\zeta' \land \psi \vdash_L \varphi$ and $\zeta' \land \chi \vdash_L \varphi$. Note that if $\vdash_L \varphi_t \to \psi$, then $\varphi \vdash_L \psi$. Then, using Proposition 2.3, we can obtain $(\zeta' \land \psi) \lor (\zeta' \land \chi) \vdash_L \varphi$.; therefore, $\zeta' \land (\psi \lor \chi) \vdash_L \varphi$ by the prefixing (as a theorem), A6, and (mp). From this we get that $\varphi \in \zeta$, which is contrary to our supposition. \square

Thus, by using Propositions 3.6 and 3.8, we can show its strong completeness as follows.

Theorem 3.9 (Strong Completeness) If $\Gamma \vDash_L \varphi$, then $\Gamma \vdash_L \varphi$.

4. Concluding remark

We investigated Routley-Meyer semantics for two versions of \mathbf{R} , i.e., \mathbf{R}^t and \mathbf{R}^T . We proved soundness and completeness theorems. We can also consider two versions of $\mathbf{R}\mathbf{M}$ (\mathbf{R} with mingle), i.e., $\mathbf{R}\mathbf{M}^t$ and $\mathbf{R}\mathbf{M}^T$, and provide Routley-Meyer semantics for these systems. We leave its investigation to the interested reader.

References

- Anderson, A. R., and Belnap, N. D. (1975), *Entailment: The Logic of Relevance and Necessity vol. 1*, Princeton, Princeton Univ. Press.
- Anderson, A. R., Belnap, N. D., and Dunn, J. M. (1992), *Entailment: The Logic of Relevance and Necessity vol 2*, Princeton, Princeton Univ. Press, 1992.
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", *Archive for Mathematical Logic* 45, pp. 673-704.
- Dunn, J. M. (1986), "Relevance logic and entailment", In Handbook of Philosophical Logic vol III, D. Gabbay and F. Guenthner (eds.), Dordrecht, D. Reidel Publ. Co., pp. 117-224
- Dunn, J. M. (2000), "Partiality and its Dual", *Studia Logica* 66, pp. 5-40.
- Dunn, J. M. and Hardegree, G. (2001). *Algebraic Methods in Philosophical Logic*, Oxford, Oxford Univ Press.
- Kripke, S. (1963). "Semantic analysis of modal logic I: normal modal propositional calculi", *Zeitschrift für mathematische Logik und Grundlagen der Mathematik* 9, pp. 67-96.
- Kripke, S. (1965a). "Semantic analysis of intuitionistic logic I", Formal systems and Recursive Functions, J. Crossley and M. Dummett (eds.), Amsterdam, North-Holland Publ. Co.. pp. 92-129.
- Kripke, S. (1965b). "Semantic analysis of modal logic II", *The theory of models*, J. Addison, L. Henkin and A. Tarski (eds.), Amsterdam, North-Holland Publ. Co.. pp. 206-220.

- Meyer, R. K., Dunn, J. M., and Leblanc, H. (1976), "Completeness of relevant quantification theories", *Notre Dame Journal of Formal Logic* 15, pp. 97-121.
- Routley, R. and Meyer, R. K. (1972). "The semantics of entailment (III)", *Journal of Philosophical Logic* 1, pp. 192-208.
- Routley, R. and Meyer, R. K. (1973). "The semantics of entailment (I)", *Truth, Syntax, and Modality*, H. Lebranc (ed.), Amsterdam, North-Holland Publ. Co., pp. 199-243.
- Yang, E. (2012), "**R**, fuzzy **R**, and algebraic Kripke-style semantics", *Korean Journal of Logic*, 15, pp. 207-221.
- Yang, E. (2013), "R and Relevance principle revisited", *Journal of Philosophical Logic* 42, pp. 767-782.
- Yang, E. (2014), "Algebraic Kripke-style semantics for relevance logics", *Journal of Philosophical Logic* 43, pp. 803-826.

철학과, 비판적사고와논술연구소

Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr

R 위한 루트리-마미어 의미론

양 은 석

글에서 우리는 연관 논리 \mathbf{R} 의 두 버전을 위한 루트라-마이어 의미론을 다룬다. 이를 위하여 먼저 \mathbf{R} 의 두 버전 \mathbf{R}^t 와 \mathbf{R}^T 를 그리고 그것들에 상응하는 대수적 의미론을 소개한다. 다음으로 이 체계들을 위한 루트라-마미어 의미론을 제공한다.

주요어: 루트리-마이어 의미론, 크립키형 의미론, 대수적 의미론, \mathbf{R} , \mathbf{R}^0 , \mathbf{R}^t , \mathbf{R}^T .