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[Abstract] This paper deals with Kripke-style semantics for FR, a fuzzy
version of R of Relevance. For this, first, we introduce FR, define the
corresponding  algebraic  structures FR-algebras, and give algebraic
completeness results for it. We next introduce an algebraic Kripke-style
semantics for FR, and connect it with algebraic semantics. We furthermore
show that such semantics does not work for R.
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1. Introduction

It is well known that many relevance logicians have had
difficulties in providing binary relational Kripke-style semantics,
i.e.,, semantics with binary accessibility relations, for relevance
logics (see e.g. [3, 4]). To the best of my knowledge, any
satisfactory such semantics for R has not yet been introduced. In
this paper we show that such semantics can be provided for a
fuzzy version of the system R of Relevance, although not R
itself.

Actually, this is a free continuation of the paper [11]. In it the
author provided algebraic Kripke-style semantics for Uninorm
logic UL. Here we introduce algebraic Kripke-style semantics for
FR, a fuzzy version of R.D For this, first, in Section 2 we
introduce FR, define the corresponding algebraic structures
FR-algebras, and give algebraic completeness results for it. In
Section 3 we introduce an algebraic Kripke-style semantics for
FR, and connect them with algebraic semantics. We furthermore
show that this semantics does not work for R (see Example 3.9).

For convenience, we shall adopt the notation and terminology
similar to those in [5, 7, 8, 10], and assume familiarity with

them (together with the results found in them).

2. The logic FR and its algebraic semantics

We base FR on a countable propositional language with

D) To see why algebraic Kripke-style semantics are interesting, see [12].
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formulas FOR built inductively as wusual from a set of
propositional variables VAR, binary connectives —, &, A, V,

and constants f, t, with defined connectives:2)

dfl. ~¢ = ¢ — f
df2. ¢ <y = (o — v) N (v = ).

We moreover define ¢; := ¢ A t. For the remainder we shall
follow the customary notation and terminology. We use the axiom
systems to provide a consequence relation.

We start with the following axiomatization of FR.

Definition 2.1 FR consists of the following axiom schemes and
rules:3)

Al. & — ¢ (self-implication, SI)

A2. (O AN w) — &, (d N w) = ¢ (A-elimination, A-E)

A3 (DY) (d—X) — (d—=>(wAX)) (A-introduction, A-I)

Ad. o = (d V w), v — (¢ V w) (V-introduction, V-I)

AS. (@) (w—x) = (PVw)—x) (V-elimination, V-E)

A6, (DAY X)) (DAY V(DAX)) (A V-distributivity, AV
-D)

A7. (¢ & v) = (v & ¢) (&-commutativity, &-C)

A8. ( & t) < ¢ (push and pop, PP)

2) Note that while A is the extensional conjunction connective, & is the
intensional conjunction one.

3) A6, indeed, is redundant in FR. But we introduce this in order to show that
R is the FR omitting A13. Note that the system omitting both A6 and Al3
is not R (cf see [I, 2, 4]).



210 Eunsuk Yang

AY. (= w) > (W > X) > (& = X)) (suffixing, SF)
Al0. (¢ = (v = X)) < (d & w) — X) (residuation, RE)
All. & — (¢ & d) (contraction, CR)

Al2. ~~¢ — ¢ (double negation elimination, DNE)

Al3. (O — w) V (v — ) (t-prelinearity, PL)

b — v, & - y (modus ponens, mp)

¢, y = & A w (adjunction, adj).

Al13 is the axiom scheme for linearity, and logics being
complete w.r.t. linearly ordered (corresponding) algebras are said
to be fuzzy logics (see e.g. [3]).

Note that the system R is the FR omitting A13. Note also that
in R (and so FR), & — w can be defined as ~(¢ & ~w)
(df3), and ¢ & y as ~ (¢ — ~y) (df4).

Proposition 2.2 FR proves:

(1) (¢ & (v & X)) < (P& ¥) & X) (&-associativity, AS)
2) (@ ANy = (D& w)

B) (@& w A X)) (P&Y N (D& X)

4 @@= @wVX)o@—>w V(=)

G) (= w VX)) A [W—>X) (@ X

Proof: The proof for (1) to (3) is easy, just noting that in
order to prove (3) we need Al13 (cf. see [1]). We prove (4) and
(5).

For the proof of (4), first note that in R, we can easily prove
=@ VX))@ ~(-v A ~x)and (p > ~(~y
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AN ~=x) < (d & (v A ~Xx)) — f). Then, using (3), we
can prove (¢ & (~y N ~x)) = ) < ~(¢ & ~w) A (O
& ~X)), and using de Morgan laws, we get ~((¢ & ~w) A
(® & ~X) <« ~(¢ & ~y) V ~(d & ~Xx). Hence, by df3,
we obtain (¢ — (v V X)) < (¢ = w) V (¢ = X)), as
required.

For the proof of (5), first note that in R, we can easily prove
(@ — w) A (g = X)) = (d — X) using (2). Then, since (¢
= X) A (w — X)) — (& > X), we can obtain (¢ — y) A
W = x) VvV (d—=>x) AN W —>Xx) > (@ — x). Thus,
using A6, we get (w = x) A (¢ = ) V (¢ = X)) = (¢
— X). Hence, using (4), we can obtain that (¢ — (v V X)) A
(v — X)) — (& — X), as wished. []

Note that R does not prove (5) in Proposition 2.2 (see [5]).

In FR, f can be defined as ~t. A theory over FR is a set T
of formulas. A proof in a theory T over FR is a sequence of
formulas whose each member is either an axiom of FR or a
member of T or follows from some preceding members of the
sequence using the two rules in Definition 2.1. T + ¢, more
exactly T e ¢, means that ¢ is provable in T w.rt. FR, ie.,
there is a FR-proof of ¢ in T. The relevant deduction theorem
(RDTy) for FR is as follows:

Proposition 2.3 ([7]) Let T be a theory, and ¢, y formulas.
(RDT) T U {¢} F wiff T = ¢ — w.
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For convenience, “~”, “A”, “V” and “—” are used
ambiguously as propositional connectives and as algebraic
operators, but context should make their meaning clear.

The algebraic counterpart of FR is the class of FR-algebras.
Let x; ;== x A t. They are defined as follows.

Definition 2.4 (i) A pointed commutative residuated distributive
lattice is a structure A = (A, t, f, A, V, * —) such that:

(I (A, N, V) is a distributive lattice.

(I) (A, *, t) is a commutative monoid.

{ny y < x—z iff x * y < z, for all x, y, z € A
(residuation).
(i) (Dunn-algebras, [l, 2]) A Dunn-algebra is a pointed

commutative residuated distributive lattice satisfying:

(IV) x < x * x (contraction).

(V) (x = f) > f < x (double negation elimination).
(iii) (FR-algebras) A FR-algebra is a Dunn-algebra satisfying:

(VD t < (x = yh V (y — X (ph.

Note that the class of Dunn-algebras characterizes the system
R. Note also that Dunn-algebras are also called De Morgan
monoids.

Additional (unary) negation and (binary) equivalence operations
are defined as in Section 2.1: ~x = x — fand x <y = (x
=y Ay = x).

The class of all FR-algebras is a variety which will be denoted
by FR.
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FR-algebra is said to be linearly ordered if the ordering of its
algebra is linear, i.e., x < y or y < x (equivalently, x A y =

x or x A\ y =y) for each pair x, y.

Definition 2.5 (Evaluation) Let # be an algebra. An
d-evaluation is a function v : FOR — o satisfying: v(¢ — w) =
v(®) = v(w), v(O A w) = v(d) A v(w), v(d V w) = v(P) V
v(w), v(d & w) = v(¢) * v(w), v(f) = f, (and hence v(~P) =
~v(P) and v(t) = t).

Definition 2.6 Let & be a FR-algebra, T a theory, ¢ a formula,
and K a class of FR-algebras.

(i) (Tautology) ¢ is a t-tautology in 4, briefly an sd-tautology
(or d-valid), if v(®) = t for each #-evaluation v.

(ii) (Model) An o-evaluation v is an #-model of T if v() > t
for each @ & T. By Mod(T, #), we denote the class of #-models
of T.

(iii) (Semantic consequence) & is a semantic consequence of T
w.rt. K, denoting by T Fk ¢, if Mod(T, #) = Mod(T U {d},
d) for each 4 € K

Definition 2.7 (FR-algebra) Let &, T, and ¢ be as in Definition
2.6. d is a FR-algebra iff whenever ¢ is FR-provable in T (i.e.
T ke @), it is a semantic consequence of T w.r.t. the set {d}
(ie. TE (4 ), 4 a FR-algebra. By MOD"(FR), we denote the
class of (linearly ordered) FR-algebras. Finally, we write T e
® in place of T ﬁmon(l)(m) d.
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Note that since each condition for the FR-algebra has a form
of equation or can be defined in equation (exercise), it can be
ensured that the class of all FR-algebras is a variety.

We first show that classes of provably equivalent formulas
form a FR-algebra. Let T be a fixed theory over FR. For each
formula ¢, let [d]r be the set of all formulas y such that T g
¢ < y (formulas T-provably equivalent to ¢). Ar is the set of
all the classes [®]r. We define that [¢]r — [w]r = [ — w]r,
O * [wh = [0 & wl, [0 A [wlr = [@ A wl, [0 V
[wlr = [& V W], t = [tl, and L = [f]r. By A7, we denote
this algebra.

Proposition 2.8 For T a theory over FR, At is a FR-algebra.

Proof: Note that A1 to A6 ensure that A and V satisfy (I) in
Definition 2.4; that A7, A8, and AS ensure that & satisfies (II);
that A10 ensures that (III) holds; and that All, Al2, and Al3
ensure that (IV), (V), and (VI), respectively, hold. It is obvious
that [O]r < [w]r ff T Fr & < (& A ) iff T Fw & — w.
Finally recall that Ar is a FR-algebra iff T Fm w implies T F
rr ¥, and observe that for ¢ in T, since T Fpm t — ¢, it
follows that [t < [®]r. Thus it is a FR-algebra. []

We next note that the nomenclature of the prelinearity condition

is explained by the subdirect representation theorem below.

Proposition 2.9 (Cf. [10]) Each FR-algebra is a subdirect
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product of linearly ordered FR-algebras.

Theorem 2.10 (Strong completeness) Let T be a theory, and ¢
a formula. T FFR (1) iff T ':FR CI) iff T 'ZIFR CI)

Proof: (i) T Fem ¢ iff T Fem ¢. The left-to-right direction
follows from definition. The right-to-left direction is as follows:
from Proposition 2.8, we obtain Ay & MOD(FR), and for
Ar-evaluation v defined as v(y) = [w]r, it holds that v &
Mod(T, Ar). Thus, since from T Fp ¢ we obtain that [d]r = v
() > t, T Fpm t = ¢. Then, since T Fp t, by (mp) T F
¢, as required.

(i) T Fep @ iff T ' ®. It follows from Proposition 2.9. []

3. Kripke-style semantics for FR

Here we consider algebraic Kripke-style semantics for FR.

Definition 3.1 (Algebraic Kripke frame) An algebraic Kripke
frame is a structure X = (X, t, f, <, *, —) such that (X, t, f,
<, *, —) is a linearly ordered residuated pointed commutative

monoid. The elements of X are called nodes.

Definition 3.2 (FR frame) A FR frame is an algebraic Kripke
frame, where x = (x — f) — f, and * is contractive, i.e., x <

X * x.
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An evaluation or forcing on an algebraic Kripke frame is a

relation |- between nodes and propositional variables, and

arbitrary formulas subject to the conditions below: for every

propositional variable p,
(AHC) if x IF p and y < x, then y |- p; and

for arbitrary formulas,

t x It iff x <t
M x kFf iff x < f
(A) x IFd A yg=iff x F ¢ and x IF y;
(V) xIFo VvV y iff x IF ¢ orx IF y;

(&) x I & & w iff there are y, z & X such that y |- @,
z IF y,and x <y * z

=) xIF ¢—yiff forally € X, if y Ik ¢, then x * vy
- .

Definition 3.3 (i) (Algebraic Kripke model) An algebraic
Kripke model is a pair (X, |), where X is an algebraic Kripke
frame and I is a forcing on X.

(i) (FR model) A FR model is a pair (X, IF), where X is a
FR frame and I is a forcing on X.

Definition 3.4 (Cf. [9]) Given an algebraic Kripke model (X,
I-), a node x of X and a formula ¢, we say that x forces @ to

express X IF &. We say that ¢ is true in (X, IF) if t IF ¢, and
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that ¢ is valid in the frame X (expressed by X models ¢) if ¢

is true in (X, IF) for every forcing I on X.

For soundness and completeness for FR, let Fp ¢ be the

theoremhood of ¢ in FR. First we note the following lemma.

Lemma 3.5 (Hereditary Lemma, HL) Let X be an algebraic
Kripke frame. For any sentence ¢ and for all nodes x, y € X,
if x IF ¢ and y < x, theny - ¢.

Proof: Easy. [

Proposition 3.6  (Soundness) If e &, then ¢ is valid in

every FR frame.

Proof: We prove the validity of A1l as an example: it suffices
to show that if x I ¢, then x F & & . Assume x |- .
Then, since x < x * X, using (&), we can obtain x - ¢ & O,
as required.

The proof for the other cases is left to the interested reader. []

By a chain, we mean a linearly ordered algebra. The next
proposition connects algebraic Kripke semantics and algebraic
semantics for FR (cf. see [9]).

Proposition 3.7 (i) The {t, f, <, *, —} reduct of a
FR-chain A is a FR frame.
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(i) Let X = (X, t, f, <, *, —) be a FR frame. Then the
structure A = (X, t, f, max, min, *, —) is a FR-algebra (where
max and min are meant w.r.t. <).

(iii) Let X be the {t, f, <, *, —} reduct of a FR-chain A,
and let v be an evaluation in A. Let for every atomic formula p
and for every x € A, x I p iff x < v(p). Then (X, IF) is a
FR model, and for every formula ¢ and for every x € A, we
obtain that: x I ¢ iff x < v(d).

Proof: The proof for (i) and (ii) is easy. For the proof of (iii),
see Proposition 3.8 in [10]. []

Theorem 3.8 (Strong completeness) FR is strongly complete

w.r.t. the class of all FR-frames.

Proof: It follows from Proposition 3.7 and Theorem 2.10. []

Let an R frame X be an FR frame on a partially ordered
monoid in place of a linearly ordered monoid, let an evaluation
or forcing |- on an R frame be the same as that on a FR
frame, and let (X, IF) be an R model. Then, at first glance, (X,
I-) seems to be a model for R. But actually it is not. The

following example verifies it.

Example 3.9 An R model (X, IF) validates Proposition 2.2 (5),
e, t IF (& = @w VvV X) A (g —=Xx) (@)
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Proof: By (—) and (A), we assume x — (¢ — (¢ V X) and
Xx b y — %, and show x = & — x. For this last, we further
assume y — ¢ and show x * y F X. By the suppositions and
(—), we have x * y = ¢ V ¥, therefore x * y - w or x *y
F x by (V). Let x * y = w. Then, since x - y — X, by
(—) we obtain x * (x * y) F X, therefore (x * x) * y - X by
the associativity of *. Then, since x < x * x, using Lemma 3.5,

we get x *y = x. [

This sentence is not a theorem of R but a theorem of FR.
Thus this model is not for R.

4. Concluding remark

We investigated algebraic Kripke-style semantics for FR, a
fuzzy version of R. We proved soundness and completeness
theorems. But we did not provide algebraic Kripke-style semantics

for R. This is an open problem left in this paper.
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