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【Abstract】This paper deals with Kripke-style semantics for FR, a fuzzy 
version of R of Relevance. For this, first, we introduce FR, define the 
corresponding algebraic structures FR-algebras, and give algebraic 
completeness results for it. We next introduce an algebraic Kripke-style 
semantics for FR, and connect it with algebraic semantics. We furthermore 
show that such semantics does not work for R.
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1. Introduction

It is well known that many relevance logicians have had 
difficulties in providing binary relational Kripke-style semantics, 
i.e., semantics with binary accessibility relations, for relevance 
logics (see e.g. [3, 4]). To the best of my knowledge, any 
satisfactory such semantics for R has not yet been introduced. In 
this paper we show that such semantics can be provided for a 
fuzzy version of the system R of Relevance, although not R 
itself. 

Actually, this is a free continuation of the paper [11]. In it the 
author provided algebraic Kripke-style semantics for Uninorm 
logic U L. Here we introduce algebraic Kripke-style semantics for 
FR, a fuzzy version of R.1) For this, first, in Section 2 we 
introduce FR, define the corresponding algebraic structures 
FR-algebras, and give algebraic completeness results for it. In 
Section 3 we introduce an algebraic Kripke-style semantics for 
FR, and connect them with algebraic semantics. We furthermore 
show that this semantics does not work for R (see Example 3.9).

For convenience, we shall adopt the notation and terminology 
similar to those in [5, 7, 8, 10], and assume familiarity with 
them (together with the results found in them).

2. The logic FR and its algebraic semantics

We base FR on a countable propositional language with 

 1) To see why algebraic Kripke-style semantics are interesting, see [12].
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formulas FOR built inductively as usual from a set of 
propositional variables VAR, binary connectives →, &, ∧, ∨, 
and constants f, t, with defined connectives:2)

df1. ～φ := φ → f
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We moreover define φt := φ ∧ t. For the remainder we shall 
follow the customary notation and terminology. We use the axiom 
systems to provide a consequence relation.

We start with the following axiomatization of FR.

D efinition 2.1  FR consists of the following axiom schemes and 
rules:3)

A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧ (φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧ (ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. (φ∧(ψ∨χ))→((φ∧ψ)∨(φ∧χ))  (∧∨-distributivity, ∧∨

-D)
A7. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
A8. (φ & t) ↔ φ  (push and pop, PP)

 2) Note that while ∧ is the extensional conjunction connective, & is the 
intensional conjunction one.

 3) A6, indeed, is redundant in FR. But we introduce this in order to show that 
R is the FR omitting A13. Note that the system omitting both A6 and A13 
is not R (cf see [1, 2, 4]).  
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A9. (φ → ψ) → ((ψ → χ) → (φ → χ))  (suffixing, SF)
A10. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ)  (residuation, RE)
A11. φ → (φ & φ)  (contraction, CR)
A12. ～～φ → φ  (double negation elimination, DNE)
A13. (φ → ψ)t ∨ (ψ → φ)t (t-prelinearity, PLt)
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ, ψ ⊢ φ ∧ ψ (adjunction, adj).

A13 is the axiom scheme for linearity, and logics being 
complete w.r.t. linearly ordered (corresponding) algebras are said 
to be fuzzy logics (see e.g. [3]).

Note that the system R is the FR omitting A13. Note also that 
in R (and so FR), φ → ψ can be defined as ～(φ & ～ψ) 
(df3), and φ & ψ as ～(φ → ～ψ) (df4).

Proposition 2.2 FR proves: 
(1) (φ & (ψ & χ)) ↔ ((φ & ψ) & χ)  (&-associativity, AS)
(2) (φ ∧ ψ) → (φ & ψ)
(3) (φ & (ψ ∧ χ)) ↔ ((φ & ψ) ∧ (φ & χ))
(4) (φ → (ψ ∨ χ)) ↔ ((φ → ψ) ∨ (φ → χ))
(5) ((φ → (ψ ∨ χ)) ∧ (ψ → χ)) → (φ → χ).

Proof: The proof for (1) to (3) is easy, just noting that in 
order to prove (3) we need A13 (cf. see [1]). We prove (4) and 
(5).

For the proof of (4), first note that in R, we can easily prove 
(φ → (ψ ∨ χ)) ↔ (φ → ～(～ψ ∧ ～χ)) and (φ → ～(～ψ 
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∧ ～χ)) ↔ ((φ & (～ψ ∧ ～χ)) → f). Then, using (3), we 
can prove ((φ & (～ψ ∧ ～χ)) → f) ↔ ～((φ & ～ψ) ∧ (φ 

& ～χ)), and using de Morgan laws, we get ～((φ & ～ψ) ∧ 

(φ & ～χ)) ↔ ～(φ & ～ψ) ∨ ～(φ & ～χ). Hence, by df3, 
we obtain (φ → (ψ ∨ χ)) ↔ ((φ → ψ) ∨ (φ → χ)), as 
required.

For the proof of (5), first note that in R, we can easily prove 
((φ → ψ) ∧ (ψ → χ)) → (φ → χ) using (2). Then, since ((φ 

→ χ) ∧ (ψ → χ)) → (φ → χ), we can obtain (((φ → ψ) ∧ 

(ψ → χ)) ∨ ((φ → χ) ∧ (ψ → χ))) → (φ → χ). Thus, 
using A6, we get ((ψ → χ) ∧ ((φ → ψ) ∨ (φ → χ))) → (φ 

→ χ). Hence, using (4), we can obtain that ((φ → (ψ ∨ χ)) ∧ 

(ψ → χ)) → (φ → χ), as wished. □

Note that R does not prove (5) in Proposition 2.2 (see [5]). 
In FR, f can be defined as ～t. A theory over FR is a set T 

of formulas. A proof in a theory T over FR is a sequence of 
formulas whose each member is either an axiom of FR or a 
member of T or follows from some preceding members of the 
sequence using the two rules in Definition 2.1. T ⊢ φ, more 
exactly T ⊢FR φ, means that φ is provable in T w.r.t. FR, i.e., 
there is a FR-proof of φ in T. The relevant deduction theorem 
(RDT t) for FR is as follows:

Proposition 2.3  ([7]) Let T be a theory, and φ, ψ formulas.
(RDT t) T ∪ {φ} ⊢ ψ iff T ⊢ φt → ψ.
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For convenience, “～”, “∧”, “∨”, and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should make their meaning clear.

The algebraic counterpart of FR is the class of FR-algebras. 
Let xt := x ∧ t. They are defined as follows.

D efinition 2.4 (i) A pointed commutative residuated distributive 
lattice is a structure A  = (A, t, f, ∧, ∨, *, →) such that:

(I) (A, ∧, ∨) is a distributive lattice.
(II) (A, *, t) is a commutative monoid.
(III) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A  

(residuation).
(ii) (Dunn-algebras, [1, 2]) A Dunn-algebra is a pointed 

commutative residuated distributive lattice satisfying:
(IV) x ≤ x * x  (contraction).
(V) (x → f) → f ≤ x   (double negation elimination).

(iii) (FR-algebras) A FR-algebra is a Dunn-algebra satisfying:
(VI) t ≤ (x → y)t ∨ (y → x)t (plt).

Note that the class of Dunn-algebras characterizes the system 
R. Note also that Dunn-algebras are also called De Morgan 
monoids.

Additional (unary) negation and (binary) equivalence operations 
are defined as in Section 2.1: ～x := x → f and x ↔ y := (x 
→ y) ∧ (y → x).

The class of all FR-algebras is a variety which will be denoted 
by FR.
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FR-algebra is said to be linearly ordered if the ordering of its 
algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y = 
x or x ∧ y = y) for each pair x, y.

D efinition 2.5  (Evaluation) Let A be an algebra. An 
A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 
v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨ 

v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(f) = f, (and hence v(~φ) = 
~v(φ) and v(t) = t).

D efinition 2.6  Let A be a FR-algebra, T a theory, φ a formula, 
and K a class of FR-algebras.

(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology 
(or A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 
for each φ ∈ T. By Mod(T, A), we denote the class of A-models 
of T.

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
A) for each A ∈ K.

D efinition 2.7  (FR-algebra) Let A, T, and φ be as in Definition 
2.6. A is a FR-algebra iff whenever φ is FR-provable in T (i.e. 
T ⊢FR φ), it is a semantic consequence of T w.r.t. the set {A} 
(i.e. T⊨  φ), A a FR-algebra. By MOD(l)(FR), we denote the 
class of (linearly ordered) FR-algebras. Finally, we write T ⊨(l)

FR 
φ in place of T ⊨MOD

(l)
(FR) φ.
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Note that since each condition for the FR-algebra has a form 
of equation or can be defined in equation (exercise), it can be 
ensured that the class of all FR-algebras is a variety.

We first show that classes of provably equivalent formulas 
form a FR-algebra. Let T be a fixed theory over FR. For each 
formula φ, let [φ]T be the set of all formulas ψ such that T ⊢FR 
φ ↔ ψ (formulas T-provably equivalent to φ). AT is the set of 
all the classes [φ]T. We define that [φ]T → [ψ]T = [φ → ψ]T, 
[φ]T * [ψ]T = [φ & ψ]T, [φ]T ∧ [ψ]T = [φ ∧ ψ]T, [φ]T ∨ 

[ψ]T = [φ ∨ ψ]T, t = [t]T, and ⊥f = [f]T. By AT, we denote 
this algebra.

Proposition 2.8  For T a theory over FR, A T is a FR-algebra.

Proof: Note that A1 to A6 ensure that ∧ and ∨ satisfy (I) in 
Definition 2.4; that A7, A8, and AS ensure that & satisfies (II); 
that A10 ensures that (III) holds; and that A11, A12, and A13 
ensure that (IV), (V), and (VI), respectively, hold. It is obvious 
that [φ]T ≤ [ψ]T iff T ⊢FR φ ↔ (φ ∧ ψ) iff T ⊢FR φ → ψ. 
Finally recall that A T is a FR-algebra iff T ⊢FR ψ implies T ⊨

FR ψ, and observe that for φ in T, since T ⊢FR t → φ, it 
follows that [t]T ≤ [φ]T. Thus it is a FR-algebra. □

We next note that the nomenclature of the prelinearity condition 
is explained by the subdirect representation theorem below.

Proposition 2.9  (Cf. [10]) Each FR-algebra is a subdirect 
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product of linearly ordered FR-algebras.

Theorem 2.10  (Strong completeness) Let T be a theory, and φ 

a formula. T ⊢FR φ iff T ⊨FR φ iff T ⊨l
FR φ.

Proof: (i) T ⊢FR φ iff T ⊨FR φ. The left-to-right direction 
follows from definition. The right-to-left direction is as follows: 
from Proposition 2.8, we obtain A T ∈ MOD(FR), and for 
A T-evaluation v defined as v(ψ) = [ψ]T, it holds that v ∈ 

Mod(T, A T). Thus, since from T ⊨FR φ we obtain that [φ]T = v
(φ) ≥ t, T ⊢FR t → φ. Then, since T ⊢FR t, by (mp) T ⊢FR 
φ, as required.

(ii) T ⊨FR φ iff T ⊨l
FR φ. It follows from Proposition 2.9. □

3. Kripke-style semantics for FR

Here we consider algebraic Kripke-style semantics for FR.

D efinition 3.1  (Algebraic Kripke frame) An algebraic Kripke 
frame is a structure X  = (X, t, f, ≤, ＊, →) such that (X, t, f, 
≤, ＊, →) is a linearly ordered residuated pointed commutative 
monoid. The elements of X  are called nodes.

D efinition 3.2  (FR frame) A FR frame is an algebraic Kripke 
frame, where x = (x → f) → f, and ＊ is contractive, i.e., x ≤ 

x * x.
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An evaluation or forcing on an algebraic Kripke frame is a 
relation ⊩ between nodes and propositional variables, and 
arbitrary formulas subject to the conditions below: for every 
propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p; and

for arbitrary formulas,

(t)   x ⊩ t  iff x ≤ t;
(f)   x ⊩ f  iff x ≤ f;
(∧)  x ⊩ φ ∧ ψ = iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ  iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that y ⊩ φ, 

z ⊩ ψ, and x ≤ y ＊ z;
(→)  x ⊩ φ → ψ iff for all y ∈ X, if y ⊩ φ, then x ＊ y 

⊩ ψ.

D efinition 3.3 (i) (Algebraic Kripke model) An algebraic 
Kripke model is a pair (X , ⊩), where X  is an algebraic Kripke 
frame and ⊩ is a forcing on X .

(ii) (FR model) A FR model is a pair (X , ⊩), where X  is a 
FR frame and ⊩ is a forcing on X .

D efinition 3.4 (Cf. [9]) Given an algebraic Kripke model (X , 
⊩), a node x of X  and a formula φ, we say that x forces φ to 
express x ⊩ φ. We say that φ is true in (X , ⊩) if t ⊩ φ, and 
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that φ is valid in the frame X  (expressed by X  models φ) if φ 

is true in (X , ⊩) for every forcing ⊩ on X .

For soundness and completeness for FR, let ⊢FR φ be the 
theoremhood of φ in FR. First we note the following lemma.

Lemma 3.5 (Hereditary Lemma, HL) Let X  be an algebraic 
Kripke frame. For any sentence φ and for all nodes x, y ∈ X , 
if x ⊩ φ and y ≤ x, then y ⊩ φ.

Proof: Easy. □

Proposition 3.6  (Soundness) If ⊢FR φ, then φ is valid in 
every FR frame.

Proof: We prove the validity of A11 as an example: it suffices 
to show that if x ⊩ φ, then  x ⊩ φ & φ. Assume  x ⊩ φ. 
Then, since x ≤ x ＊ x, using (&), we can obtain x ⊩ φ & φ, 
as required. 

The proof for the other cases is left to the interested reader. □

By a chain, we mean a linearly ordered algebra. The next 
proposition connects algebraic Kripke semantics and algebraic 
semantics for FR (cf. see [9]).

Proposition 3.7  (i) The {t, f, ≤, ＊, →} reduct of a 
FR-chain A is a FR frame.
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(ii) Let X  = (X, t, f, ≤, ＊, →) be a FR frame. Then the 
structure A  = (X, t, f, max, min, ＊, →) is a FR-algebra (where 
max and min are meant w.r.t. ≤).

(iii) Let X  be the {t, f, ≤, ＊, →} reduct of a FR-chain A, 
and let v be an evaluation in A. Let for every atomic formula p 
and for every x ∈ A, x ⊩ p iff x ≤ v(p). Then (X , ⊩) is a 
FR model, and for every formula φ and for every x ∈ A, we 
obtain that: x ⊩ φ iff x ≤ v(φ).

Proof: The proof for (i) and (ii) is easy. For the proof of (iii), 
see Proposition 3.8 in [10]. □

Theorem 3.8  (Strong completeness) FR is strongly complete 
w.r.t. the class of all FR-frames.

Proof: It follows from Proposition 3.7 and Theorem 2.10. □

Let an R frame X  be an FR frame on a partially ordered 
monoid in place of a linearly ordered monoid, let an evaluation 
or forcing ⊩ on an R frame be the same as that on a FR 
frame, and let (X , ⊩) be an R model. Then, at first glance, (X , 
⊩) seems to be a model for R. But actually it is not. The 
following example verifies it.

Example 3.9 An R model (X , ⊩) validates Proposition 2.2 (5), 
i.e., t ⊩ ((φ → (ψ ∨ χ)) ∧ (ψ → χ)) → (φ → χ).
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Proof: By (→) and (∧), we assume x ⊢ (φ → (ψ ∨ χ) and 
x ⊢ ψ → χ, and show x ⊢ φ → χ. For this last, we further 
assume y ⊢ φ and show x * y ⊢ χ. By the suppositions and 
(→), we have x * y ⊢ ψ ∨ χ, therefore x * y ⊢ ψ or x * y 
⊢ χ by (∨). Let x * y ⊢ ψ. Then, since x ⊢ ψ → χ, by 
(→) we obtain x * (x * y) ⊢ χ, therefore (x * x) * y ⊢ χ by 
the associativity of *. Then, since x ≤ x * x, using Lemma 3.5, 
we get x * y ⊢ χ. □ 

This sentence is not a theorem of R but a theorem of FR. 
Thus this model is not for R.

4. Concluding remark

We investigated algebraic Kripke-style semantics for FR, a 
fuzzy version of R. We proved soundness and completeness 
theorems. But we did not provide algebraic Kripke-style semantics 
for R. This is an open problem left in this paper.
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양 은 석

이 글에서 우리는 연관 논리 R을 퍼지화한 체계 FR을 위한 크

립키형 의미론을 다룬다. 이를 위하여 먼저 FR 체계를 소개하고 

그에 상응하는 FR-대수를 정의한 후 FR이 대수적으로 완전하다는 

것을 보인다. 다음으로 FR을 위한 대수적 크립키형 의미론을 소개

하고 이를 대수적 의미론과 연관 짓는다. 마지막으로 이러한 의미

론이 R에는 적용될 수 없다는 점을 보인다.

주요어: R, FR, (대수적) 크립키형 의미론, 대수적 의미론, 다치 

논리, 퍼지 논리


