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Standard Completeness for the Weak Uninorm 
Mingle Logic WUML*
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【Abstract】Fixed-point conjunctive left-continuous idempotent uninorms have 
been introduced (see e.g. [2, 3]). This paper studies a system for such 
uninorms. More exactly, one system obtainable from IUML (Involutive 
uninorm mingle logic) by dropping involution (INV), called here WUML 
(Weak Uninorm Mingle Logic), is first introduced. This is the system of 
fixed-point conjunctive left-continuous idempotent uninorms and their residua 
with weak negation. Algebraic structures corresponding to the system, i.e., 
WUML-algebras, are then defined, and algebraic completeness is provided for 
the system. Standard completeness is further established for WUML and 
IUML in an analogy to that of WNM  (Weak nilpotent minimum logic) and 
NM  (Nilpotent minimum logic) in [4].
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Ⅰ. Introduction

In general a function n : [0, 1] → [0, 1] is called negation 
function (briefly a negation) if and only if (iff) n is 
non-increasing and satisfies n(0) = 1 and n(1) = 0. A negation n 
satisfying n(n(x)) ≥ x for all x ∈ [0, 1] is said to be a weak 
negation; and a weak negation n is called a strong negation (or 
involutive negation) if n further satisfies n(n(x)) = x for all x ∈
[0, 1]. In strong negations on [0, 1], n(x) can be defined as 1 - 
x, i.e., n(x) = 1 - x, called the standard negation.

For the past 11 or 12 years idempotent uninorms, in particular, 
fixed-point conjunctive left-continuous idempotent uninorms, have 
been introduced (see e.g. [2, 3, 7]). Furthermore, the logic of the 
conjunctive left-continuous idempotent uninorm with strong 
negation and identity e = n(e) = ½, i.e., IU ML (Involutive 
uninorm mingle logic), has been recently introduced in [8]. But 
as far as the author knows, any other systems, which are logics 
of conjunctive left-continuous idempotent uinorms with weak 
negations (in place of strong negation) and identity e ∈ (0, 1] 
introduced in [2, 3] have not yet been studied. We shall here 
introduce a system for such uninorms. More exactly, we first 
introduce WU ML (Weak uninorm mingle logic) as a 
generalization of IU ML having weak negation instead of strong 
negation. We then define the corresponding algebraic structures, 
WUML-algebras, and prove algebraic completeness for it. We 
further establish standard completeness for WU ML and IU ML in 
an analogy to that of WN M  (Weak nilpotent minimum logic) and 
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N M  (Nilpotent minimum logic) in [4].
For convenience, we shall adopt the notation and terminology 

similar to those in [1, 4, 6, 8], and assume being familiar with 
them (together with results found in them).

Ⅱ. Syntax

We base the weak uninorm mingle logic WU ML on a 
countable propositional language with formulas FOR built 
inductively as usual from a set of propositional variables VAR, 
binary connectives →, &, ∧, ∨, and constants T, F, f, t, with 
defined connectives:

df1. ~φ := φ → f, and
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φt as φ ∧ t. 
For the remainder we shall follow the customary notation and 
terminology. We use the axiom systems to provide a consequence 
relation.

We start with the following axiomatization of WU ML as a 
(substructural) fuzzy logic.

D efinition 2.1  WU ML consists of the following axiom schemes 
and rules:

A1. φ → φ (self-implication, SI)
A2. (φ ∧ ψ) → φ, (φ ∧ ψ) → ψ (∧-elimination, ∧-E)
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A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ)) (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ), ψ → (φ ∨ ψ) (∨-introduction, ∨-I)
A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ) (∨-elimination, ∨-E)
A6. φ → T (verum ex quolibet, VE)
A7. F → φ (ex falso quadlibet, EF)
A8. (φ & ψ) → (ψ & φ) (&-commutativity, &-C)
A9. (φ & t) ↔ φ (push and pop, PP)
A10. (φ → ψ) → ((ψ → χ) → (φ → χ)) (suffixing, SF)
A11. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ) (residuation, RE)
A12. (φ → ψ)t ∨ (ψ → φ)t (prelinearity, PL)
A13. (φ & φ) ↔ φ

A14. t ↔ f
A15. (φ → ψ) ∨ ((φ → ψ) → (~φ ∧ ψ))
A16. (φ → ψ) → (~φ ∨ ψ)
A17. (φ → ~ψ) → ((φ & ψ) → (φ ∧ ψ))
A18. (φ & ψ) → ((φ ∨ ψ) → (φ & ψ))
A19. ~T → F
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ, ψ ⊢ φ ∧ ψ (adjunction, adj).

The system having A1 to A12, mp, and adj is U L (Uninorm 
logic); the U L having A13 is U ML (Uninorm mingle logic); and  
the U ML with A14 and (INV) ~~φ → φ is IU ML. These were 
introduced in [8]. We from now on call a system satisfying A1 
to A14 a fixed-point uninorm mingle logic, briefly, a FUML.

Proposition 2.2 WU ML proves:
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(1) (φ & (ψ & χ)) ↔ ((φ & ψ) & χ) (&-associativity, AS)
(2) φ ∨ ~φ (excluded middle, EM)
(3) ~(φ ∧ ~φ) (non-contradiction, NC)
(4) (φ → ψ) → ((φ → ψ) ↔ (~φ ∨ ψ))
(5) (~φ ∧ ψ) → (φ → ψ)
(6) ((φ → ψ) → (~φ ∧ ψ)) → ((~φ ∧ ψ) → (φ → ψ))
(7) ((φ → ψ) → (~φ ∧ ψ)) → ((φ → ψ) ↔ (~φ ∧ ψ))
(8) (φ → ~ψ) ∨ (φ & ψ)
(9) (φ → ~ψ) → ((φ & ψ) ↔ (φ ∧ ψ))
(10) (φ & ψ) → ((φ & ψ) ↔ (φ ∨ ψ))
(11) ~T ↔ F.

In WU ML, f can be defined as ~t and vice versa. A theory 
over WU ML is a set T of formulas. A proof in a sequence of 
formulas whose each member is either an axiom of WU ML or a 
member of T or follows from some preceding members of the 
sequence using the rules mp and adj. T ⊢ φ, more exactly T ⊢

W U M L φ, means that φ is provable in T w.r.t. WU ML, i.e., there 
is a WU ML-proof of φ in T. The t-deduction theorem (DT t) for 
WU ML is as follows:

Proposition 2.3 Let T be a theory, and φ, ψ formulas. T ∪
{φ} ⊢W U M L ψ iff T ⊢W U M L φt → ψ.

Proof: See [9]. □

A theory T is inconsistent if T ⊢ F; otherwise it is consistent. 
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For convenience, “~”, “∧”, “∨”, and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should make their meaning clear.

Ⅲ. Semantics

Suitable algebraic structures for WU ML are obtained as a 
subvariety of the variety of commutative residuated lattices in the 
sense of e.g. [5].

D efinition 3.1 A pointed bounded commutative residuated  
lattice is a structure A  = (A, ⊤, ⊥, ⊤t, ⊥f, ∧, ∨, *, →) 
such that:
(I) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element ⊤

and bottom element ⊥.
(II) (A, *, ⊤t) satisfies for some ⊤t and for all x, y, z ∈ A,

(a) x * y = y * x (commutativity)
(b) ⊤t * x = x (identity)
(c) x * (y * z) = (x * y) * z (associativity).

(III) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A  
(residuation).

(A, *, ⊤t) satisfying (II-b, c) is a monoid. Thus (A, *, ⊤t) 
satisfying (II-a, b, c) is a commutative monoid. To define the 
above lattice we may take in place of (III) a family of equations 
as in [6]. Using → and ⊥f we can define ⊤t as ⊥f → ⊥f, and 
~ as in (df1). Then, WUML-algebra whose class characterizes 
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WU ML is defined as follows.

D efinition 3.2  (WUML-algebra) A WUML-algebra is a pointed 
bounded commutative residuated lattice satisfying the conditions: 
for all x, y,

(pl) ⊤t ≤ (x → y)⊤t ∨ (y → x)⊤t,
(id) x * x = x,
(fp) ⊤t = ⊥f,
(w1) ⊤t ≤ (x → y) ∨ ((x → y) → (~x ∧ y)),
(w2) x → y ≤ ~x ∨ y,
(w3) x → ~y ≤ (x * y) → (x ∧ y),
(w4) x * y ≤ (x ∨ y) → (x * y), and
(w5) ~⊤ = ⊥.

Note that UL-algebras are pointed bounded commutative 
residuated lattices satisfying (pl); UML-algebras are UL-algebras 
satisfying (id); and IUML-algebras are UML-algebras satisfying 
(fp) and ~~x ≤ x. 

WUML-algebra is said to be linearly ordered if the ordering of 
its algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y 
= x or x ∧ y = y) for each pair x, y.

D efinition 3.3  (Evaluation) Let A be an algebra. An 
A-evaluation is a function v : FOR → A satisfying:

v(φ → ψ) = v(φ) → v(ψ),
v(φ ∧ ψ) = v(φ) ∧ v(ψ),
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v(φ ∨ ψ) = v(φ) ∨ v(ψ),
v(φ & ψ) = v(φ) * v(ψ),
v(F) = ⊥,
v(f) = ⊥f,

(and hence v(~φ) = ~v(φ), v(T) = ⊤, and v(t) = ⊤t).

D efinition 3.4  Let A be a WUML-algebra, T a theory, φ a 
formula, and K a class of WUML-algebras.
(i) (Tautology) φ is a ⊤t-tautology in A, briefly an A-tautology 

(or A-valid), if v(φ) ≥ ⊤t for each A-evaluation v.
(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ ⊤t 

for each φ ∈ T. By Mod(T, A), we denote the class of 
A-models of T.

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪
{φ}, A) for each A ∈ K.

D efinition 3.5  (WU ML-algebra) Let A, T, and φ be as in 
Definition 3.4. A is a WUML-algebra iff whenever φ is 
WUML-provable in T (i.e. T ⊢W U M L φ), it is a semantic 
consequence of T w.r.t. the set {A} (i.e. T⊨ φ), A a 
WUML-algebra. By MOD (l)(WUML), we denote the class of 
(linearly ordered) WU ML-algebras. Finally, we write T ⊨(l)

W U M L 
φ in place of T ⊨MOD

(l)
(W U M L) φ.

Note that since each condition for the WUML-algebra has a 
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form of equation or can be defined in equation (exercise), it can 
be ensured that the class of all WUML-algebras is a variety.

Let A  be a WUML-algebra. We first show that classes of 
provably equivalent formulas form a WUML-algebra. Let T be a 
fixed theory over WU ML. For each formula φ, let [φ]T be the 
set of all formulas ψ such that T ⊢W U M L φ ↔ ψ (formulas 
T-provably equivalent to φ). AT is the set of all the classes [φ]T. 
We define that [φ]T → [ψ]T = [φ → ψ]T, [φ]T * [ψ]T = [φ & 
ψ]T, [φ]T ∧ [ψ]T = [φ ∧ ψ]T, [φ]T ∨ [ψ]T = [φ ∨ ψ]T, ⊥ = 
[F]T, ⊤ = [T]T, ⊤t = [t]T, and ⊥f = [f]T. By AT, we denote this 
algebra.

Proposition 3.6  For T a theory over WU ML, A T is a 
WU ML-algebra.

Proof: Note that A1 to A7 ensure that ∧ and ∨ satisfy (I) in 
Definition 3.1; that AS, A8, A9 ensure that & satisfies (II); that 
A11 ensures that (III) holds; and that A12 to A19 ensure that the 
conditions in Definition 3.2 hold. It is obvious that [φ]T ≤ [ψ]T 
iff T ⊢WU M L φ ↔ (φ ∧ ψ) iff T ⊢W U M L φ → ψ. Finally 
recall that A T is a WU ML-algebra iff T ⊢W U M L ψ implies T ⊨

W U M L ψ, and observe that for φ in T, since T ⊢W U M L t → φ, it 
follows that [t]T ≤ [φ]T. Thus it is a WU ML-algebra. □

We next note that the nomenclature of the prelinearity condition 
is explained by the subdirect representation theorem below.



Eunsuk Yang64

Proposition 3.7  (Cf. [10]) Each WUML-algebra is a subdirect 
product of linearly ordered WUML-algebras.

Theorem 3.8  (Strong completeness) Let T be a theory, and φ a 
formula. T ⊢W U M L φ iff T ⊨WU ML φ iff T ⊨l

W U M L φ.

Proof: (i) T ⊢W U M L φ iff T ⊨W U M L φ. Left to right follows 
from definition. Right to left is as follows: from Proposition 3.6, 
we obtain A T ∈ MOD(L), and for A T-evaluation v defined as v
(ψ) = [ψ]T, it holds that v ∈ Mod(T, A T). Thus, since from T 
⊨WU ML φ we obtain that [φ]T = v(φ) ≥ ⊤t, T ⊢WU ML t → φ. 
Then, since T ⊢W U M L t, by (mp) T ⊢W U M L φ, as required.

(ii) T ⊨WU M L φ iff T ⊨l
W U M L φ. It follows from Proposition 

3.7. □

Ⅳ. Uninorms and their residua

In this section, using 1, 0, and some 1 t, and 0 f in the real 
unit interval [0, 1], we shall express ⊤, ⊥, ⊤t, and ⊥f, 
respectively. We also define standard WUML-algebras and 
uninorms on [0, 1].

D efinition 4.1  A WUML-algebra is standard iff its lattice 
reduct is [0, 1].

In standard WUML-algebras the monoid operator * is a 
uninorm.
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D efinition 4.2  A uninorm  is a function ○ : [0, 1]2 → [0, 1] 
such that for some 1 t ∈ [0, 1] and for all x, y, z ∈ [0, 1]:

(a) x ○ y = y ○ x (commutativity),
(b) x ○ (y ○ z) = (x ○ y) ○ z (associativity),
(c) x ≤ y implies x ○ z ≤ y ○ z (monotonicity), and
(d) 1 t ○ x = x (identity).

The function ○ satisfying (1-identity) 1 t = 1 is a t-norm . A 
uninorm ○ is said to be square increasing if it satisfies 
(square-increasingness) x ≤ x ○ x, for all x ∈ [0, 1]; square 
decreasing if it satisfies (square-decreasingness) x ○ x ≤ x, for 
all x ∈ [0, 1]; and idempotent if it is both square increasing and 
square decreasing. A uninorm is called conjunctive if 0 ○ 1 = 0; 
disjunctive if 0 ○ 1 = 1; and fixed-point if 1 t = 0 f.

The left-continuity property of conjunctive uninorms is 
important in the sense that it gives a residuated implication and 
so plays an important role in standard completeness proof of 
WU ML as in t-norm based logics such as MTL. ○ is said to be 
residuated iff there is → : [0, 1]2 → [0, 1] satisfying 
(residuation) on [0, 1]. Given a uninorm ○, residuated 
implication → determined by ○ is defined as x → y := sup{z: 
x ○ z ≤ y} for all x, y ∈ [0, 1]. Then, we can show that for 
any uninorm ○, ○ and its residuated implication → form a 
residuated pair iff ○ is conjunctive and left-continuous in both 
arguments (see Proposition 5.4.2 [9]).

It is clear that the operator * of any standard UL-algebra is a 



Eunsuk Yang66

conjunctive uninorm with identity ⊤t and residuum →; conversely 
any residuated uninorm gives rise to a UL-algebra as follows: if 
○ is a uninorm with residuum → and identity 1 t, then for any 
0 f ∈ [0, 1], ([0, 1], 1, 0, 1 t, 0f, min, max, ○, →) is a standard 
UL-algebra (see Proposition 17 in [8]).

We finally state some known interesting facts related to 
conjunctive left-continuous idempotent uninorms and their residua.

Fact 4.3  (i) ([2]) A binary operator ○ is a conjunctive 
left-continuous idempotent uninorm with identity element 1 t ∈ (0, 
1] iff there is a left-continuous uniquely determined non-increasing 
function n : [0, 1] → [0, 1] with n(1 t) = 1 t and n(n(x)) ≥ x for 
x ∈ [0, 1], such that for all x, y ∈ [0, 1]:

                 x ○ y = min(x, y) if y ≤ n(x),
                          max(x, y) otherwise.            
(ii) ([8]) Let A s = ([0, 1], 1, 0, ½, ½, min, max, ○s, →s), 

where:
                x ○s y = min(x, y) if x + y ≤ 1,
                          max(x, y) otherwise.            
φ is valid in all standard IUML-algebras iff φ is valid in the 

IUML-algebra A s.

The operator ○s in (ii) of Fact 4.3 is an example of (i) 
satisfying strong negation. We introduce an unknown further 
example of (i) with weak negation.

Example 4.4  Given a fixed-point weak negation n, i.e., a 
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negation n satisfying: for all x ∈ [0, 1],
(a) n(1t) = 1 t,
(b) n(n(x)) ≥ x, and
(c) n(0) = 1 and n(1) = 0,

we can construct a conjunctive left-continuous idempotent 
uninorm ○ given by, for all x, y ∈ [0, 1]:

                   x ○ y = min(x, y) if y ≤ n(x),
                            max(x, y) otherwise.

We call uninorms in Fact 4.3 (ii) and Example 4.4 IUML- and 
WUML-uninorms, respectively.

Left-continuity of the above uninorms ensures that the 
corresponding residuated implications can be obtained. The 
following are the known facts.

Fact 4.5  (i) ([3]) Consider a conjunctive left-continuous 
idempotent uninorm ○ with a negation n. Then its residuated 
implication → is given by 

                  x → y = max(n(x), y) if x ≤ y,
                           min(n(x), y) otherwise.
(ii) ([3, 7]) Consider an involutive negation ns. Then the 

residiated implication of the corresponding conjunctive 
left-continuous idempotent uninorm ○s is given by 

                  x →s y = max(1-x, y) if x ≤ y,
                            min(1-x, y) otherwise.

The residiated implication of the corresponding conjunctive 
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left-continuous idempotent uninorms with the negation in Example 
4.4 is obtained as in Fact 4.5.

IU ML is the system satisfying (ii) in Fact 4.3 and so (ii) in 
Fact 4.5. Any system satisfying (i) in Fact 4.3 corresponds to a 
FUML, i.e., a fixed-point uninorm mingle logic. But, as far as 
the author knows, such systems having weak negations in place 
of strong negation have not yet been introduced.

Ⅴ. Standard completeness

We here provide standard completeness results for WU ML and 
IU ML in an analogy to that of WN M  and N M  in [4]. First note 
that weak and strong negations are defined as in Section 1. 
Moreover,

D efinition 5.1  ([4]) Given a bounded linearly ordered set (C, 
≤, ⊤, ⊥), a non-increasing function n : C → C is said to be 
symmetric w.r.t. the identity mapping if it satisfies:
1. if x ∈ n(C), then n(x) = y implies x = n(y), and
2. if x ∉ n(C), then
(i) n is constant in the interval [x, n2(x)] with value n(x), and
(ii) for any y > n(x), it is n(y) < x, i.e., n(x) is a discontinuity 

point on the right with n(n(x)-) = n2(x) and n(n(x)+) < x.

We call linearly ordered WUML- and IUML-algebras WUML- 
and IUML-chains. We first note that given a bounded chain C, n 
: C → C is a weak negation iff it is non-increasing and 
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symmetric w.r.t. the identity mapping (see Proposition A.3 in [4]). 
As a consequence, we then give WU ML- and IU ML-chains with 
weak and strong negations, respectively, as follows.

Proposition 5.2  (i) Given a weak negation n on [0, 1], we can 
define a residuated pair of operations ○n, →n such that ([0, 1], 
○n, →n, 1, 0, 1 t, 0 f) is a WU ML-chain with negation n.

(ii) For any strong negation ns on [0, 1], we can define a 
residuated pair of operations ○ns, →ns such that ([0, 1], ○ns, →

ns, 1, 0, 1t, 0 f) is an IU ML-chain with negation ns. 

Proof: (i) Let n be the n in Example 4.4. We first note that 
given a weak negation n on [0, 1], a uninorm ○n for WU ML, 
called the weak Gödel uninorm , is defined as in (i) of Example 
4.4. Then, given a weak negation n on [0, 1], we can easily 
prove that:

(a) ○n has residuum defined by
 x →n y = max(n(x), y) if x ≤ y;

min(n(x), y) otherwise (Weak Gödel u-implication),
where u-implication is an abbreviation of uninorm- 
implication,

(b) ([0, 1], ○n, →n, 1, 0, 1 t, 0 f) is a WUML-algebra, and
(c) the corresponding negation is n.
Since the axioms of WU ML are valid in a WUML-algebra, this 

algebra is a WU ML-algebra as well.
Note that the condition x ≤ n(y) is symmetric in the sense 

that it is equivalent to y ≤ n(x) because x ≤ n(y) implies n2(y) 
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≤ n(x), and y ≤ n2(y).
(ii) Proof of the case of strong negation is analogous to that of 

the negation in (i), i.e., given a strong negation ns on [0, 1], we 
can easily prove that:

(a) ○ns has residuum defined by
x →ns y = max(1-x, y) if x ≤ y;

min(1-x, y) otherwise (Strong Gödel u-implication),
where u-implication is an abbreviation of uninorm- 
implication,

(b) ([0, 1], ○ns, →ns, 1, 0, ½, ½) is an IUML-algebra, and
(c) the corresponding negation n is the strong one. □

Fact 5.3  ([4]) (1) Weak negation functions on the real unit 
interval [0, 1] are not all isomorphic, and yet (2) strong negation 
functions on it are.

Then because of Fact 5.3 we can say that

Proposition 5.4  (i) Weak negation functions on [0, 1] are not 
all isomorphic so that WU ML-chains defined by WUML-uninorms 
are not.

(ii) Strong negation functions on [0, 1] are all isomorphic so 
that IU ML-chains defined by IUML-uninorms are.

Theorem 5.5  (Weak standard completeness) (i) ⊢W U M L φ iff φ 

is a tautology in all standard WU ML-algebras.
(ii) ⊢IU M L φ iff φ is a tautology w.r.t. the standard 
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IU ML-algebra ([0, 1], ○ns, →ns, 1, 0, ½, ½).

Proof: Each proof of (i) and (ii) is analogous to that of 
Theorems 3 and 4, respectively, in [4].

(i) Soundness is obvious. For completeness, let ⊬W U M L φ. We 
show that there is a WU ML-chain C and an evaluation v on C 
such that v(φ) < 1 t. We prove the case nC. Let nC be the 
negation in C and take X as the finite subset of C consisting of 
all the values v(ψ), nC(v(ψ)), and nC(nC(v(ψ))) for all subformulas 
ψ of φ, plus 0C, 1C, and 1 tC (= 0 fC). Let

X ∩ nC(C) = {0C = a0 < a1 < … < 1 tC = 0fC < … < am = 
1C},

where 1tC = am/2 if m is even and otherwise 1 tC = a(m+1)/2. Let 
f : X → [0, 1] be an ordered mapping (x < y implies f(x) < 
f(y)) such that f(ai) = i/m. Define on [0, 1] the weak negation 
function n as follows: taking 1t = f(1 tC), and letting 1 t

- = 1 t - 
1/m,

   n(x) = 1 - x     if x ∈ {i/m: 0 ≤ i ≤ m} and x ≠ 1t,
           1 t       if 1 t

- < x ≤ 1 t,
         (m-i-1)/m  otherwise, i.e., 
                   if x ∈ (i/m, (i+1)/m) where i/m ≠ 1 t

-,

It is clear that n is a fixed-point weak negation on [0, 1] and 
f is a morphism w.r.t. minimum, maximum, implication, and 
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negation. Note that we take 1 t = f(1 tC). Thus, by defining the 
evaluation v'(p) = v(f(p)) for any propositional variable p 
occurring in φ, we get v'(φ) = v(f(φ)) < 1 t, as desired.

(ii) Soundness is obvious. For completeness, let ⊬IU ML φ. Then 
there is an IU ML-chain C and an evaluation v on C such that v
(φ) < 1 t. Let nsC be the strong negation in C and take X as the 
finite subset of C, whose number of elements being odd, 
consisting of all the values v(ψ) and nsC(v(ψ)) for all subformulas 
ψ of φ together with 0C, 1C, and 1tC (= 0fC). Suppose that X has 
m + 1 elements and let X = {0C = a0 < a1 < … < 1 tC = 0 fC < 
… < am = 1C}, where 1 tC = am/2 and m is even. Now let f(ai) = 
i/m, 0 ≤ i ≤ m. It is clear that f, as a mapping from X to the 
set {i/m: 0 ≤ i ≤ m}, is a morphism w.r.t. minimum, 
maximum, implication, and negation, and we take 1 t = f(1 tC). 
Thus, defining v'(p) = v(f(p)) for any propositional variable p 
occurring in φ, we get v'(φ) = v(f(φ)) < 1 t, as required. Thus, 
⊢IU M L φ iff φ is a tautology in all standard IU ML-algebras.

Finally note that Proposition 5.4 (ii) ensures that φ is a 
tautology in all standard IU ML-algebras iff φ is a tautology in 
the standard ([0, 1], ○ns, →ns, 1, 0, ½, ½). □

Furthermore, we can show strong standard completeness for 
WU ML and IU ML.

Theorem 5.6  (Strong standard completeness) For L ∈ {WU ML, 
IU ML}, let T be a theory over L, and φ a formula. T ⊢L φ iff 
φ is true in each standard L-model of T.
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Proof: Its proof is analogous to that of Theorem 4.2.17 in [6]. □

Ⅵ. Concluding remark

In this paper we introduced the system WU ML, which is a 
generalization of IU ML having weak negation in place of strong 
negation. After defining the corresponding algebraic structures, we 
provided algebraic completeness for it. Furthermore, we 
established standard completeness for WU ML and IU ML.

In fact we can also introduce systems for other fixed-point 
conjunctive left-continuous idempotent uninorms. We shall 
investigate this in some subsequent paper.
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WUML의 표준적 완전성
양 은 석

이 논문은 uninorm의 한 체계인 WUML(Weak Uninorm Mingle 
Logic)을 다룬다. 먼저 WUML을 도입하고, 그 체계에 상응하는 대

수적 구조를 정의한다. 그런 다음 그 체계의 대수적 완전성을 증명

한다. 끝으로 WUML과 IUML의 표준적 완전성을 증명한다. 

주요어: (준구조) 퍼지 논리, 퍼지 논리, 멱등 유니놈 논리


