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【Abstract】This paper investigates a new proof of standard completeness (i.e. 
completeness on the real unit interval [0, 1]) for the uninorm (based) logic 
UL introduced by Metcalfe and Montagna in [15]. More exactly, standard 
completeness is established for UL by using nuclear completions method 
introduced in [8, 9].
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1. Introduction

In this paper we investigate a new proof of standard 
completeness (i.e., completeness on the real unit interval [0, 1]) 
of the uninorm logic UL. For this, we first recall briefly some 
historical facts associated with fuzzy logic, which are mentioned 
in [22]. 

Many-valued logics with truth values in the real unit interval 
[0, 1] have a long and distinguished history, and the well-known 
examples are the infinite-valued systems Ł (Łukasiewicz logic), G 
(Gödel-Dummett logic), and ∏ (Product logic). In particular, 
Hájek [11] introduced BL (Basic fuzzy logic) and showed that Ł, 
G, and ∏ are its extensions. BL is the most important logic of 
continuous t-norms, and Ł, G, and ∏ are emerging in this 
respect as fundamental examples of logics based on continuous 
t-norms. Esteva and Godo further [5] introduced the logic of 
left-continuous t-norms MTL (Monoidal t-norm logic), which 
copes with the logic of left-continuous t-norms, as a weakening 
of BL. This is the most basic t-norm logic known to us. In this 
approach, (multiplicative) conjunction connectives are interpreted 
by t-norms (see [11]), which are commutative, associative, 
monotonic binary functions with identity 1.

Although t-norms play an important role in fuzzy logic 
(theory), these operators do not admit a compensating behavior. 
As Detyniecki [3] mentioned, t-norms do not allow low values to 
be compensated by high values (see [19]). For this reason, Yager 
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and Rybalov [21] introduced uninorms as a generalization of 
t-norms. These operators have identity lying anywhere in [0, 1] 
rather than at 1 as t-norms. After their introducing uninorms, 
many interesting properties of uninorms and their applications 
such as full reinforcement, compensation behavior, bipolar 
problems, etc., have been studied (see e.g. [1, 7, 13, 17, 19, 20]). 
Furthermore, several uninorm (based) logics have been recently 
introduced. For instance, Metcalfe (and Montagna) [14, 15] 
introduced the uninorm (based) logics UL, IUL (Involutive 
uninorm logic), UML (Uninorm mingle logic), and IUML 
(Involutive uninorm mingle logic) as substructural fuzzy logics 
based on uninorms. In particular, UL is the most basic uninorm 
logic, which is the logic of conjunctive left-continuous uninorms.

Notice that all of the systems above are complete (so called 
standard complete) w.r.t. algebras with lattice reduct [0, 1]. One 
method introduced in [6, 12] for MTL and its axiomatic 
extensions (calling it Jenei and Montagna's method, briefly JM 
method), consists of showing that countable linearly ordered 
algebras of a given variety can be embedded into linearly and 
densely ordered members of the same variety, which can in turn 
be embedded into algebras with lattice reduct [0, 1]. (Notice that 
the present author showed that standard completeness for some 
axiomatic extensions of UL using JM method in [22].) But this 
method seems to fail with associativity for UL, and so appears 
not to work in general for weakening-free fuzzy logics such as 
UL based on uninorms. Because of this negative fact Metcalfe 
and Montagna [15] instead introduced a new approach for proving 
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standard completeness of uninorm logics (calling it Metcalfe and 
Montagna's method, briefly MM method), consisting of the 
following two steps: 1. after extending logics with density rule, 
showing that such systems are complete w.r.t. linearly and 
densely ordered algebras, and for particular extensions are 
complete w.r.t. those algebras with lattice reduct [0, 1]; 2. giving 
a syntactic elimination of density rule (as a rule of the 
corresponding hypersequent calculus), i.e., showing that if φ is 
derivable in a uninorm logic L extended with density rule, then it 
is also derivable in L. 

The starting point for the current work is the observation that 
MM method is unnecessarily complicate. Namely, MM method 
may be simplified. To verify this, we shall provide a way to 
simplify MM method by eliminating the step extending logics 
with density rule. More exactly, we establish a new proof of 
standard completeness for UL by means of a way requiring dense 
theory in place of density rule. For this we further use nuclear 
completions method introduced in [8, 9], generalizing Dedekind- 
McNeille completions.

For convenience, we shall adopt the notation and terminology 
similar to those in [2, 5, 6, 11, 15], and assume being familiar 
with them (together with results found in them).

2. Syntax

We base the uninorm logic UL on a countable propositional 
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language with formulas FOR built inductively as usual from a set 
of propositional variables VAR, binary connectives →, &, ∧, ∨, 
and constants T, F, f, t, with defined connectives:

df1. ～φ := φ → f, and
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the remainder we 
shall follow the customary notation and terminology. We use the 
axiom systems to provide a consequence relation.

We start with the following axiomatization of UL as a 
(substructural) fuzzy logic.

Definition 2.1 UL consists of the following axiom schemes and 
rules:

A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧ (φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧ (ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. φ → T (verum ex quolibet, VE)
A7. F → φ  (ex falso quadlibet, EF)
A8. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
A9. (φ & t) ↔ φ  (push and pop, PP)
A10. (φ → ψ) → ((ψ → χ) → (φ → χ))  (suffixing, SF)
A11. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ)  (residuation, RE)
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A12. for each n, (φ → ψ)n
t ∨ (ψ → φ)n

t (n
t-prelinearity, 

PLn
t).

φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ, ψ ⊢ φ ∧ ψ (adjunction, adj)

Proposition 2.2 UL proves:
(1) (φ & (ψ & χ)) ↔ ((φ & ψ) & χ)  (&-associativity, AS).

In UL, f can be defined as ～t and vice versa. A theory over 
UL is a set T of formulas. A proof in a sequence of formulas 
whose each member is either an axiom of UL or a member of T 
or follows from some preceding members of the sequence using 
the rules (mp) and (adj). T ⊢ φ, more exactly T ⊢UL φ, means 
that φ is provable in T w.r.t. UL, i.e., there is a UL-proof of φ 

in T. The local t-deduction theorem (LDTt) for UL is as follows:

Proposition 2.3 Let T be a theory, and φ, ψ formulas. T ∪
{φ} ⊢UL ψ iff there is n such that T ⊢UL φn

t → ψ.

Proof: See [16]. □

A theory T is inconsistent if T ⊢ F; otherwise it is consistent. 
For convenience, “～”, “∧”, “∨”, and “→” are used 

ambiguously as propositional connectives and as algebraic 
operators, but context should make their meaning clear.

3. Semantics
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Suitable algebraic structures for UL are obtained as a subvariety 
of the variety of commutative residuated lattices in the sense of 
e.g. [8].

Definition 3.1 A pointed bounded commutative residuated  
lattice is a structure A = (A, ⊤, ⊥, ⊤t, ⊥f, ∧, ∨, *, →) 
such that:

(I) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 
⊤ and bottom element ⊥.

(II) (A, *, ⊤t) satisfies for some ⊤t and for all x, y, z ∈ A,
(a) x * y = y * x  (commutativity)
(b) ⊤t * x = x  (identity)
(c) x * (y * z) = (x * y) * z  (associativity).
(III) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A  

(residuation).

(A, *, ⊤t) satisfying (II-b, c) is a monoid. Thus (A, *, ⊤t) 
satisfying (II-a, b, c) is a commutative monoid. To define the 
above lattice we may take in place of (III) a family of equations 
as in [11]. Using → and ⊥f we can define ⊤t as ⊥f → ⊥f, 
and ～ as in (df1). Then, UL-algebra whose class characterizes 
UL is defined as follows.

Definition 3.2 (UL-algebra) A UL-algebra is a pointed bounded 
commutative residuated lattice satisfying the condition: for all x, 
y, and for each n (≥ 1),

(plt) ⊤t ≤ (x → y)n
⊤t ∨ (y → x)n

⊤t.



Eunsuk YANG8

UL-algebra is said to be linearly ordered if the ordering of its 
algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y = 
x or x ∧ y = y) for each pair x, y.

Definition 3.3 (Evaluation) Let A be an algebra. An 
A-evaluation is a function v : FOR → A satisfying:

v(φ → ψ) = v(φ) → v(ψ),
v(φ ∧ ψ) = v(φ) ∧ v(ψ),
v(φ ∨ ψ) = v(φ) ∨ v(ψ),
v(φ & ψ) = v(φ) * v(ψ),
v(F) = ⊥,
v(f) = ⊥f,

(and hence v(～φ) = ～v(φ), v(T) = ⊤, and v(t) = ⊤t).

Definition 3.4 Let A be a UL-algebra, T a theory, φ a formula, 
and K a class of UL-algebras.

(i) (Tautology) φ is a ⊤t-tautology in A, briefly an A-tautology 
(or A-valid), if v(φ) ≥ ⊤t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥
⊤t for each φ ∈ T. By Mod(T, A), we denote the class of 
A-models of T.

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
A) for each A ∈ K.
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Definition 3.5 (UL-algebra)  Let A, T, and φ be as in 
Definition 3.4. A is a UL-algebra iff whenever φ is UL-provable 
in T (i.e. T ⊢UL φ), it is a semantic consequence of T w.r.t. the 
set {A} (i.e. T  φ), A a UL-algebra. By MOD(l)(UL), we 
denote the class of (linearly ordered) UL-algebras. Finally, we 
write T ⊨(l)

UL φ in place of T ⊨MOD
(l)

(UL) φ.

Note that since each condition for the UL-algebra has a form 
of equation or can be defined in equation (exercise), it can be 
ensured that the class of all UL-algebras is a variety.

Let A be a UL-algebra. We first show that classes of provably 
equivalent formulas form a UL-algebra. Let T be a fixed theory 
over UL. For each formula φ, let [φ]T be the set of all formulas 
ψ such that T ⊢UL φ ↔ ψ (formulas T-provably equivalent to 
φ). AT is the set of all the classes [φ]T. We define that [φ]T →
[ψ]T = [φ → ψ]T, [φ]T * [ψ]T = [φ & ψ]T, [φ]T ∧ [ψ]T = [φ 

∧ ψ]T, [φ]T ∨ [ψ]T = [φ ∨ ψ]T, ⊥ = [F]T, ⊤ = [T]T, ⊤t = 
[t]T, and ⊥f = [f]T. By AT, we denote this algebra.

Proposition 3.6 For T a theory over UL, AT is a UL-algebra.

Proof: Note that A1 to A7 ensure that ∧ and ∨ satisfy (I) in 
Definition 3.1; that AS, A8, A9 ensure that & satisfies (II); that 
A11 and A12 ensure that (III) and (pln

t) hold. It is obvious that 
[φ]T ≤ [ψ]T iff T ⊢UL φ ↔ (φ ∧ ψ) iff T ⊢UL φ → ψ. 
Finally recall that AT is a UL-algebra iff T ⊢UL ψ implies T ⊨

UL ψ, and observe that for φ in T, since T ⊢UL t → φ, it 
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follows that [t]T ≤ [φ]T. Thus it is a UL-algebra. □

We next note that the nomenclature of the prelinearity condition 
is explained by the subdirect representation theorem below.

Proposition 3.7 ([18]) Each UL-algebra is a subdirect product 
of linearly ordered UL-algebras.

Theorem 3.8 (Strong completeness) Let T be a theory, and φ a 
formula. T ⊢UL φ iff T ⊨UL φ iff T ⊨l

UL φ.

Proof: (i) T ⊢UL φ iff T ⊨UL φ. Left to right follows from 
definition. Right to left is as follows: from Proposition 3.6, we 
obtain AT ∈ MOD(L), and for AT-evaluation v defined as v(ψ) 
= [ψ]T, it holds that v ∈ Mod(T, AT). Thus, since from T ⊨UL 
φ we obtain that [φ]T = v(φ) ≥ ⊤t, T ⊢UL t → φ. Then, since 
T ⊢UL t, by (mp) T ⊢UL φ, as required.

(ii) T ⊨UL φ iff T ⊨l
UL φ. It follows from Proposition 3.7. 

□

4. Uninorms and their residua

In this section, using 1, 0, and some 1t, and 0f in the real 
unit interval [0, 1], we shall express ⊤, ⊥, ⊤t, and ⊥f, 
respectively. We also define standard UL-algebras and uninorms 
on [0, 1].
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Definition 4.1 A UL-algebra is standard iff its lattice reduct is 
[0, 1].

In standard UL-algebras the monoid operator * is a uninorm.

Definition 4.2 A uninorm is a function ○ : [0, 1]2 → [0, 1] 
such that for some 1t ∈ [0, 1] and for all x, y, z ∈ [0, 1]:

(a) x ○ y = y ○ x (commutativity),
(b) x ○ (y ○ z) = (x ○ y) ○ z (associativity),
(c) x ≤ y implies x ○ z ≤ y ○ z (monotonicity), and
(d) 1t ○ x = x (identity).

The function ○ satisfying (1-identity) 1t = 1 is a t-norm. ○ is 
residuated iff there is → : [0, 1]2 → [0, 1] satisfying 
(residuation) on [0, 1]. A uninorm is called conjunctive if 0 ○ 1 
= 0, and disjunctive if 0 ○ 1 = 1.

The left-continuity property of conjunctive uninorms is 
important in the sense that it gives a residuated implication and 
so plays an important role in standard completeness proof of UL 
as in t-norm based logics such as MTL. Given a uninorm ○, 
residuated implication → determined by ○ is defined as x → y 
:= sup{z: x ○ z ≤ y} for all x, y ∈ [0, 1]. Then, we can 
show that for any uninorm ○, ○ and its residuated implication 
→ form a residuated pair iff ○ is conjunctive and left-continuous 
in both arguments (see Proposition 5.4.2 [10]).
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5. Standard completeness

We here provide standard completeness results for UL using 
nuclear completions in [8, 9]. We shall call these completions 
method nuclear completions method.

A linear theory T is said to be dense if for each pair φ, ψ of 
formulas, T ⊬ φ → ψ implies that there is a propositional 
variable p not occurring in T, φ, or ψ such that T ⊬ φ → p 
and T ⊬ p → ψ.

Proposition 5.1 Let T be a theory over UL and φ a formula. 
T ⊢UL φ iff for every linearly densely ordered UL-algebra and 
evaluation v, if v(ψ) ≥ ⊤t for each ψ ∈ T, then v(φ) ≥ ⊤t.

Proof: Left to right is by induction on the height of a proof 
for T ⊢UL φ. As an example we prove the rule mp. Suppose 
toward contradiction that there is a linearly and densely ordered 
L-algebra and evaluation v such that v(α) ≥ ⊤t for each α ∈ T 
and  ⊤t ≤ v(φ → ψ), v(φ) but v(ψ) < ⊤t. Since v(φ → ψ) = 
v(φ) → v(ψ), ⊤t ≤ v(φ → ψ) = v(φ) → v(ψ) and so v(φ) ≤
v(ψ). This implies that ⊤t ≤ v(ψ), a contradiction.

We prove right to left contrapositively. We extend the language 
(if necessary) with countably many new variables not occurring in 
T or φ. We then fix an enumeration (φn, ψn), n ∈ ω, of all 
pairs of formulas of the extended language. For a theory T over 
UL such that T ⊬UL φ, we define a sequence of sets Tn by 
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induction as follows:

T1 = {φ′: T ⊢UL φ′}.
Ti+1 = T ∪ {φi → ψi} if T, φi → ψi ⊬UL φ,
       T ∪ {ψi → φi} otherwise,

where Ti+1 ⊢UL φi → ψi iff for every qi not in Ti+1 ∪ {φi, ψ

i}, Ti+1 ⊢UL φi → qi or Ti+1 ⊢UL qi → ψi.

Let T′ be the union of all these Tn's. By Proposition 3.6, A
T′ is a UL-algebra. Moreover, AT′ is linearly and densely 
ordered. For this we show that T′ is linearly and densely 
ordered. For linearity, it suffices to note that having Tn ⊬UL φ 

observe that T, φi → ψi ⊬UL φ or T, ψi → φi ⊬UL φ. 
Otherwise, T, φi → ψi ⊢UL φ and T, ψi → φi ⊢UL φ. Then by 
LDTt, there are m, n such that T ⊢UL (φi → ψi)m

t → φ and T 
⊢UL (ψi → φi)n

t → φ. Since (φt & φt) → φt, without loss of 
generality we may assume that m ≤ n and so T ⊢UL (φi → ψ

i)n
t → φ and T ⊢UL (ψi → φi)n

t → φ. Then, by adj, T ⊢UL((φi 
→ ψi)n

t → φ) ∧ ((ψi → φi)n
t → φ), and so by A5 and mp, T 

⊢UL ((φi → ψi)n
t ∨ (ψi → φi)n

t) → φ. But then by A12, T ⊢

UL φ, a contradiction. For density, we just note that it follows 
from the definition that if T′ ⊬UL φn → ψn, then T′ ⊬UL φn 
→ qn and T′ ⊬UL qn → ψn; and if T′ ⊬UL ψn → φn, then 
T′ ⊬UL ψn → qn and T′ ⊬UL qn → φn. 

Hence, defining an evaluation v such that v(p) = [p]T' for all 
propositional variables p, we obtain that v(ψ) = [ψ]T' ≥ ⊤t for 
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each ψ ∈ T', but v(φ) = [φ]T' < ⊤t, as desired. □

A partially-ordered monoid (po-monoid for brevity) is a 
structure A = (A, ≤, *) such that * is a binary operation on A, 
≤ is a partial order on A, and * is order preserving, i.e., 
monotone. A (commutative) residuated lattice is a po-monoid. A 
nucleus on a po-monoid A is a map g : A → A such that g is 
a closure operator on (A, ≤) and for all x, y ∈ A, 

(nuc) g(x) * g(y) ≤ g(x * y).

Using nuclear completions we show that UL is standard 
complete.

Theorem 5.2 Every countable linearly and densely ordered 
UL-algebra can be embedded into a standard UL-algebra.

Proof: Its proof is analogous to that of Theorem 28 in [15]. 
We first recall that any (bounded and pointed) residuated lattice 
A can be embedded into a complete residuated lattice A+ by 
means of the nuclear completion (see [8]). The lattice A+ is 
defined as follows:

1. For every X ⊆ A, let C(X) denote the intersection of all 
sets Z such that: (1) X ⊆ Z, (2) Z is closed downward, and (3) 
for all Y ⊆ Z, if sup(Y) exists in A, then sup(Y) ∈ Z. Then it 
follows that C is a closure operator. The domain of A+ is {X: X 
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⊆ A such that C(X) = X}.
2. The operations of A+ are: X ○ Y = C(X * Y), where, 

letting * be the monoid operator of A,  X * Y = {x * y: x ∈
X and y ∈ Y}; X ∧ Y = X ∩ Y; X ∨ Y = C(X ∪ Y); 
and X → Y = {z ∈ A: ∀x ∈ X, z * x ∈ Y}. Then it 
follows from the definition that C is a nucleus on (A+, ⊆) 
because C(X) ○ C(Y) = X ○ Y = C(X ○ Y) for X, Y ∈ A+.

3. The constants in A+ are: ⊤+ = A, ⊥+ = {⊥}, ⊤t
+ = {z 

∈ A: z ≤ ⊤t}, and ⊥f
+ = {z ∈ A: z ≤ ⊥f}.

First note that A+ is the nucleus retraction of A. The 
embedding h of A into A+ is defined by h(x) = {z ∈ A: z ≤
x}. Notice that for X ∈ A+, we have X = sup{h(x): x ∈ X}, 
i.e., every element of A+ is the supremum of a set of elements 
of A. Furthermore, the suprema and infima existing in A are 
preserved by h, and for X, Y ∈ A+,

(1) X ○ Y = sup{h(x) ○ h(y): x ∈ X, y ∈ Y}.

Since C-closed sets are closed downwards and so C is a 
downward nucleus, if A is linearly ordered, so is A+ by 
inclusion. Hence, if A is a linearly ordered UL-algebra, so is A+. 
Note that if A is densely ordered, the image of A under h is 
dense in A+, i.e., for every X ⊂ Y ∈ A+, there is z ∈ A such 
that X ⊂ h(z) ⊂ Y. Hence, if A is a countable linearly and 
densely ordered UL-algebra, it is order isomorphic to Q ∩ [0, 
1], and its nuclear completion, be completely and densely ordered, 
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is isomorphic to [0, 1]. Since by (1), the monoid operation ○ on 
A+ is left-continuous, it follows that A+ is a standard UL-algebra. 
□

Theorem 5.3 (Strong standard completeness) T ⊢UL φ iff for 
every standard UL-algebra and evaluation v, if v(ψ) ≥ ⊤t for 
each ψ ∈ T, then v(φ) ≥ ⊤t.

Proof: It follows from Proposition 5.1 and Theorem 5.2. □

Remark 5.4 Recall that any (bounded and pointed) residuated 
lattice A can be embedded into a complete residuated lattice A+ 
by means of the Dedekind-McNeille completion (see [8]). This 
implies that we can prove standard completeness of UL using 
Dedekind-McNeille completion in place of nuclear completion. We 
here just note that Theorem 5.2 can be proved using 
Dedekind-McNeille completion (see Theorem 28 in [15]), and this 
gives a standard completeness of UL using Dedekind-McNeille 
completion.

6. Concluding remark

We here investigated (not merely algebraic completeness but 
also) standard completeness for UL. This work can be generalized 
to the systems, which are the axiomatic extensions of UL 
introduced in [15]. We shall investigate this in some subsequent 



A new proof of standard completeness for the uninorm logic UL 17

paper.
To some readers it will be interesting to say that IUML, an 

extension of UL, is R-mingle (RM) plus (FP) t ↔ f and so 
IUML can be regarded not merely as fuzzy logic but also as 
relevance logic. Dunn (see e.g. [4]) provided a Kripke-style 
semantics for RM and Yang (see [23]) has recently studied 
Kripke-style semantics for some neighbors of R. Kripke-style 
semantics seems to be provided for UL and its axiomatic 
extensions, in particular, IUML. We shall consider this in another 
subsequent paper.
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