Non-associative fuzzy-relevance logics: strong t-associative monoidal uninorm logics*

Eunsuk Yang

[Abstract] This paper investigates generalizations of weakening-free uninorm logics not assuming associativity of intensional conjunction (so called fusion) & as non-associative fuzzy-relevance logics. First, the strong t-associative monoidal uninorm logic StAMUL and its schematic extensions are introduced as non-associative propositional fuzzy-relevance logics. (Non-associativity here means that, differently from classical logic, & is no longer associative.) Then the algebraic structures corresponding to the systems are defined, and algebraic completeness results for them are provided. Next, predicate calculi corresponding to the propositional systems introduced here are considered.

[Key words] non-associative fuzzy-relevance logic, strong t-associative monoidal uninorm logics, RM.

† I must thank the anonymous referees for their helpful comments.
1. Introduction

The present author [25, 26] has investigated the R of Relevance with mingle (RM) and several uninorm logics such as (I)UL ((Involutive) uninorm logic), and (I)UML ((Involutive) uninorm mingle logic) introduced by Metcalfe and Montagna [18, 19], as fuzzy-relevance logics. The aim of this paper is to introduce non-associative generalizations of such fuzzy-relevance logics. (Non-associativity here means that, differently from classical logic, intensional conjunction & is no longer associative.)

First recall that all the fuzzy-relevance systems above have associative intensional conjunction & and such associative logics and algebras have been studied intensively in the literature. On the other hand, logical systems with non-associative & and corresponding algebras have been very little investigated. At any rate non-associative Lambek calculi are good examples of non-associative systems (see [3, 6, 15, 20, 21]). But these systems are neither fuzzy nor relevant. Non-associative rings (e.g. Lie rings and Lie algebras) are good examples of non-associative algebras. But their non-associative operation is not logical operation, but multiplication.

Fortunately, MICA (Monotonic Identity Commutative Aggregation) operators, which do not require associativity, have been introduced (see [22, 23, 24]), and a non-associative generalization of MV-algebras is recently further introduced (see [4]). Note that Yager showed that MICA operators constitute the
Non-associative fuzzy-relevance logics

basic operators needed for aggregation in fuzzy system modeling. Then it is a natural question: can we introduce non-associative generalizations of RM and the above uninorm logics?

We in fact have further practical reasons for requiring non-associative &: first, when we think of & as intensional conjunction, some &-sentences in argument are not associative. Consider "and" as compatibility. Then \(\phi \) and \(\psi \) & \(\chi \) may not be compatible with each other, even though \(\phi \) & \(\psi \) and \(\chi \) are. Let \(\phi, \psi, \) and \(\chi \) be "This color changes", "This color is red", and "This color is blue", respectively, and both "This color changes and this color is A" and "This color is A and this color changes" mean that this A color changes into another one. Let the comma in the compound sentence play the role of parenthesis. Then we can think that "This color changes and this color is red, and this color is blue" means that this red color changes into blue one. But from this sentence we can not infer "This color changes, and this color is red and blue" because "this color is red" and "this color is blue" are incompatible with each other (and so there is no color to change). We are in fact considering non-associative & (which will be introduced here) as this kind of compatibility. Second, some literature have recently shown that areas such as subjective probabilities, quantum mechanics, neuroscience, etc. require non-associativity (see [2, 8, 9, 12, 13, 16]).

MICA operation is a variant of the concept of uninorm obtained by removing the associativity condition in its definition. The present author [27] have recently introduced such operations
with several weak versions of associativity, and investigated their properties. In particular, he defined strong t-associative (sta-) uninorm as a uninorm having strong t-associativity in place of associativity. We here investigate logical systems (based on sta-uninorms) as non-associative generalizations of RM and the above uninorm logics. This will satisfy the purpose because such systems can be regarded as both fuzzy-relevant and non-associative.

**

In this paper we first introduce the sta-monoidal uninorm logic \textsc{StAMUL} and its schematic extensions as non-associative fuzzy-relevance logics. We usually call a system relevant if it satisfies the strong relevance principle (SRP) in [1] that $\phi \rightarrow \psi$ is a theorem only if ϕ and ψ share a propositional variable, and sometimes if it satisfies the weak relevance principle (WRP) in [7] that $\phi \rightarrow \psi$ is a theorem only if either (i) ϕ and ψ share a propositional variable or (ii) both $\neg \phi$ and ψ are theorems. But \textsc{StAMUL}, the most basic non-associative fuzzy-relevance logic defined here, is neither strongly relevant nor weakly relevant in the above senses because it proves such formulas as (α) $(\phi \land (\phi \rightarrow \bot)) \rightarrow (\psi \lor (\psi \rightarrow \bot))$, i.e., $(\phi \land \neg \phi) \rightarrow (\psi \lor \neg \psi)$. (Note that since \textsc{StAMUL} does not prove (EM) $\phi \lor \neg \phi$, α does not satisfy WRP in \textsc{StAMUL}.) Thus, for the relevance of \textsc{StAMUL} and its extensions, we suggest weakenings of SRP and WRP as follows:¹)

¹) Since in \textsc{StAMUL} ϕ and ψ may share a constant in place of a propositional
(Fuzzy strong relevance principle, FSRP) \(\phi \rightarrow \psi \) is a theorem only if \(\phi \) and \(\psi \) share a propositional variable or constant.

(Fuzzy weak relevance principle, FWRP) \(\phi \rightarrow \psi \) is a theorem only if either (i) \(\phi \) and \(\psi \) share a propositional variable or constant, or (ii) both \(\neg \phi \) and \(\neg \psi \) are theorems.

StAMUL and its extensions instead satisfy FWRP, and so are relevant in the sense that they satisfy FWRP.

FSRP and FWRP may be regarded as fuzzy versions of SRP and WRP, respectively, in the sense that logics with the "prelinearity" axiom (PL\(^a\)) (see A15 below) usually prove \(\alpha \) and axiomatizations for several fuzzy logics are obtained simply by adding (PL\(^a\)) to a known logic because (roughly speaking) it ensures that the logic is characterized by linearly ordered algebras. Let \(L \) be an StAMUL, i.e., a schematic extension of **StAMUL**. \(L \) is more exactly fuzzy in the sense that it satisfies the fuzzy condition (of a logic) of Cintula in [5] that \(L \) is complete with respect to (w.r.t.) linearly ordered \(L \)-algebras. After defining algebraic structures corresponding to the systems, we shall provide algebraic completeness results for the systems. This will ensure that they are all fuzzy in Cintula's sense. We next present the predicate calculi corresponding to the propositional systems considered here.

StAMUL and its extensions introduced in section 2 are not merely fuzzy-relevant, but non-associative in the sense that they do not prove associativity. Therefore, they all can be called non-associative fuzzy-relevance logics.

For brevity, by \(L \) (\(L \)-algebra resp) we shall ambiguously variable (see a), we add "or constant" to SRP and WRP.
express the systems ((corresponding) algebras resp) defined in section 2 (3 resp) all together, if we do not need distinguish them, but context should determine which system (algebra resp) is intended; and by L-algebra (i.e. boldface L-algebra), we mean L-algebra satisfying soundness (see Definition 3.5). Also, for convenience, we shall adopt the notation and terminology similar to those in [5, 10, 11, 14], and assume being familiar with them (together with results found in them).

2. Syntax

Logical systems we shall define in this section are based on a countable propositional language with formulas FOR built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow, $\&$, \land, \lor, and constants F, f, t. Further definable connectives are:

\[\text{df1. } \sim \phi := \phi \rightarrow f,\]
\[\text{df2. } \phi \leftrightarrow \psi := (\phi \rightarrow \psi) \land (\psi \rightarrow \phi).\]

We may define t as $f \rightarrow f$. We moreover define ϕ_t as $\phi \land t$. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

We start with the following axiom schemes and rules for the strong t-associative monoidal uninorm logic $StAMUL$, the basic
non-associative fuzzy-relevance logic defined here.

Definition 2.1 StAMUL consists of the following axiom schemes and rules:

A1. \(\phi \rightarrow \phi \) (self-implication, SI)

A2. \((\phi \land \psi) \rightarrow \phi, (\phi \land \psi) \rightarrow \psi\) (\(\land\)-elimination, \(\land\)-E)

A3. \(((\phi \rightarrow \psi) \land (\phi \rightarrow \chi)) \rightarrow (\phi \rightarrow (\psi \land \chi))\) (\(\land\)-introduction, \(\land\)-I)

A4. \(\phi \rightarrow (\phi \lor \psi), \psi \rightarrow (\phi \lor \psi)\) (\(\lor\)-introduction, \(\lor\)-I)

A5. \(((\phi \rightarrow \psi) \land (\psi \rightarrow \chi)) \rightarrow ((\phi \lor \psi) \rightarrow \chi)\) (\(\lor\)-elimination, \(\lor\)-E)

A6. \((\phi \lor (\psi \lor \chi)) \rightarrow ((\phi \lor \psi) \lor (\phi \lor \chi))\) (\(\lor\)-distributivity, \(\land \lor\)-D)

A7. \(F \rightarrow \phi\) (ex falsum quodlibet, EF)

A8. \(\phi \rightarrow T\) (Verum ex quolibet, VE)

A9. \((\phi \lor (\psi \land \chi)) \leftrightarrow ((\phi \land \psi) \lor \chi)\) (strong \(t\)-associativity, sAS)

A10. \((\phi \land \psi) \rightarrow (\psi \land \phi)\) (\&-commutativity, \&-C)

A11. \((\phi \land \iota) \leftrightarrow \phi\) (push and pop, PP)

A12. \((\psi \rightarrow \chi)_h \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))\) (\(t\)-prefixing, PF)

A13. \((\phi \rightarrow \psi)_h \rightarrow ((\psi \rightarrow \chi) \rightarrow (\phi \rightarrow \chi))\) (\(t\)-suffixing, SF)

A14. \((\phi \rightarrow (\psi \rightarrow \chi)) \leftrightarrow ((\phi \land \psi) \rightarrow \chi_h)\) (\(t\)-residuation, RE)

A15. for each \(n\), \((\phi \rightarrow \psi)_1 \lor (\psi \rightarrow \phi)_1\) (\(\lor\)-prelinearity, PL)

\(\phi \rightarrow \psi, \phi \vdash \psi\) (modus ponens, mp)

\(\phi, \psi \vdash \phi \land \psi\) (adjunction, adj).

Definition 2.2 A logic is a schematic extension of an arbitrary logic \(L\) if and only if (iff) it results from \(L\) by adding (finitely or infinitely many) axiom schemes. \(L\) is a strong \(t\)-associative
monoidal uninorm logic (StAMUL) iff \(L \) is a schematic extension of StAMUL. In particular, the following are non-associative fuzzy-relevance logics extending StAMUL:

- Involutive StAMUL StAMUL is StAMUL plus

 \[
 \text{(DNE)} \quad \sim \phi \rightarrow \phi,
 \]

- Idempotent StAMUL StAMUL is StAMUL plus

 \[
 \text{(ID)} \quad \phi \leftrightarrow (\phi \& \phi).
 \]

- Involutive StAMUL StAMUL is StAMUL plus (DNE).

For easy reference we let \(L \) be a set of logical systems defined previously.

Definition 2.3 \(L = \{\text{StAMUL, IstAMUL, StAMUL, } \text{StAMUL}\}. \)

In \(L (\equiv L) \), \(f \) can be defined as \(\sim t \) and vice versa. In \(L \) with (DNE) (briefly IL), \(\wedge \) is defined using \(\sim \) and \(\vee \).

A theory over \(L \) is a set \(T \) of formulas. A proof in a sequence of formulas whose each member is either an axiom of \(L \) or a member of \(T \) or follows from some preceding members of the sequence using the rules (mp) and (adj). \(T \vdash \phi \), more exactly \(T \vdash L \phi \), means that \(\phi \) is provable in \(T \) w.r.t. \(L \), i.e., there is an \(L \)-proof of \(\phi \) in \(T \). The relevant (local) deduction theorem (RLDT) for \(L \) is as follows:

Proposition 2.4 Let \(T \) be a theory, and \(\phi, \psi \) formulas.

(i) (RLDT) \(T \cup \{\phi\} \vdash L \psi \) iff there is \(n \) such that \(T \vdash L \phi^n \).
\[\rightarrow \psi. \]

(ii) (RDT) Let \(L \) be an \(\text{StAMUL} \) with (ID). \(T \cup \{ \phi \} \vdash L \psi \)
if\(T \vdash L \phi \rightarrow \psi. \)

Proof: Proof of (i) is as usual. (ii) is just Enthymematic Deduction Theorem (see [17]). \(\square \)

A theory \(T \) is *inconsistent* if \(T \vdash F \); otherwise it is *consistent.

For convenience, "\(\neg \)", "\(\wedge \)", "\(\vee \)", and "\(\rightarrow \)" are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

Remark 2.5 \(\text{UL, IUL, UML, RM, and IUML} \) are the systems as follows:

- **UL** is \(\text{StAMUL} \) plus

 \(\text{(PF)} \) (\(\psi \rightarrow \chi \)) \(\rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \); and

 \(\text{(RE)} \) (\(\phi \rightarrow (\psi \rightarrow \chi) \)) \(\leftrightarrow ((\phi \& \psi) \rightarrow \chi) \).

- **IUL** is **UL** plus \(\text{DNE} \).

- **UML** is **UL** plus \(\text{ID} \).

- **RM** is **UML** plus \(\text{DNE} \).

- **IUML** is **RM** plus \(\text{t} \leftrightarrow f \) (fixed-point, FP).

Note that **UL** proves \(\text{(AS)} \) (\(\phi \& (\psi \& \chi) \) \(\leftrightarrow ((\phi \& \psi) \& \chi) \) and so its extensions above do. Thus \(\text{StAMUL, \text{IStAMUL,} \text{SStAMUL,} \text{and IStAMUL} \) can be regarded as *non-associative generalizations* of **UL, IUL, UML, and RM** (or **IUML**), respectively.
3. Semantics

Suitable algebraic structures for Ls are obtained as varieties of isotonic commutative strong t-associative monoidal residuated lattices.

Definition 3.1 An isotonic commutative strong t-associative monoidal residuated lattice (icstamr-lattice) is a structure \(A = (A, \top, \bot, \land, \lor, *, \rightarrow) \) such that:

(I) \((A, \top, \bot, \land, \lor) \) is a bounded distributive lattice with top element \(\top \) and bottom element \(\bot \).

(II) \((A, *, \top) \) satisfies for all \(x, y, z \in A \),

(a) \(x * y = y * x \) (commutativity)

(b) \(\top * x = x \) (identity)

(c) \(x \leq y \) implies \(x * z \leq y * z \) (isotonicity)

(d) \(x \leq \top \) implies \(x * (y * z) = (x * y) * z \) (strong t-associativity)

(III) \(y \leq x \rightarrow z \text{ iff } x * y \leq z \), for all \(x, y, z \in A \) (residuation).

We call \((A, *, \top) \) satisfying (II-b, d) a strong t-associative (sta-) monoid. Thus \((A, *, \top) \) satisfying (II-a, b, c, d) is an isotonic commutative sta-monoid. \((A, *, \top) \) satisfying (II) and (ID) \(x = x * x \) is an idempotent isotonic commutative sta-monoid. \((A, *, \top) \) satisfying (II) and (associativity) \(x * (y * z) = (x * y) * z \) on \([0, 1]\) is a uninorm and this is a t-norm in
case $T_i = T$.

To define an Icstamr-lattice we may take in place of (II-c, d)
(c') $x \ast (y \lor z) = (x \ast y) \lor (x \ast z)$ and
(d') $x_i \ast (y \ast z) = (x_i \ast y) \ast z$, respectively; and
in place of (III) a family of equations as in [14].

In an Icstamr-lattice \ast need not be associative so that (A, \ast, T, i) does not necessarily form a commutative semigroup. But since
$x \ast (x \ast x) = (x \ast x) \ast x$ by (II-a), \ast is still associative in case
$x \ast y = y \ast x$ and $y = x \ast x$. This allows us to write iterated
*#s without brackets w.r.t. the same element(s). By x^n, we denote
$x \ast \cdots \ast x$, n factors. Using \rightarrow and \bot_f we can define T_f as $\bot_f \rightarrow \bot_f$, and as in (df1). Then, an L-algebra corresponding to
L is defined as follows.

Definition 3.2 (StAMUL-algebra) An *StAMUL-algebra* is an
Icstamr-lattice satisfying the condition: for all x, y and for each n
(≥ 1), $(pl^n_x) \ T_i \leq (x \rightarrow y)^n, \lor (y \rightarrow x)^n$.

In an analogy to Definition 3.2, we can define several algebras
Corresponding to the systems mentioned in Definition 2.3.

For $L (\in Ls)$, L-algebra (defined in 3.2) is said to be *linearly
ordered* if the ordering of its algebra is linear, i.e., $x \leq y$ or y
$\leq x$ (equivalently, $x \land y = x$ or $x \land y = y$) for each pair x, y.

Definition 3.3 (Evaluation) Let A be an algebra. An
A-evaluation is a function $v : FOR \rightarrow A$ satisfying:
\(v(\phi \rightarrow \psi) = v(\phi) \rightarrow v(\psi), \)
\(v(\phi \land \psi) = v(\phi) \land v(\psi), \)
\(v(\phi \lor \psi) = v(\phi) \lor v(\psi), \)
\(v(\phi \& \psi) = v(\phi) \ast v(\psi), \)
\(v(T) = T, \)
\(v(F) = \bot, \)
\(v(f) = \bot_r, \)

(and hence \(v(\neg \phi) = \neg v(\phi) \) and \(v(t) = T_r). \)

Definition 3.4 Let \(\mathcal{A} \) be an L-algebra, \(T \) a theory, \(\phi \) a formula, and \(K \) a class of L-algebras.

(i) (Tautology) \(\phi \) is a \(T \)-tautology in \(\mathcal{A} \), briefly an \(\mathcal{A} \)-tautology (or \(\mathcal{A} \)-valid), if \(v(\phi) \geq T_r \) for each \(\mathcal{A} \)-evaluation \(v \).

(ii) (Model) An \(\mathcal{A} \)-evaluation \(v \) is an \(\mathcal{A} \)-model of \(T \) if \(v(\phi) \geq T_r \) for each \(\phi \in T \). By \(\text{Mod}(T, \mathcal{A}) \), we denote the class of \(\mathcal{A} \)-models of \(T \).

(iii) (Semantic consequence) \(\phi \) is a semantic consequence of \(T \) w.r.t. \(K \), denoting by \(T \Vdash_K \phi \), if \(\text{Mod}(T, \mathcal{A}) = \text{Mod}(T \cup \{\phi\}, \mathcal{A}) \) for each \(\mathcal{A} \in K \).

In the next definition, we shall use the notational convention mentioned in the last paragraph of section 1.

Definition 3.5 ([L-algebra]) Let \(\mathcal{A} \), \(T \), and \(\phi \) be as in Definition 3.4. \(\mathcal{A} \) is an L-algebra iff whenever \(\phi \) is L-provable in \(T \) (i.e. \(T \Vdash_L \phi \), L an L logic), it is a semantic consequence of \(T \) w.r.t.
the set \(\{A\} \) (i.e. \(T \models_{(A)} \Phi \), \(A \) a corresponding \(L \)-algebra). By MOD\(^{(b)}\)\((L)\), we denote the class of (linearly ordered) \(L \)-algebras. We write \(T \models^{(b)}_L \Phi \) in place of \(T \models_{\text{MOD}^{(b)}_L} \Phi \).

4. Algebraic completeness

Let \(A \) be an \(\text{StAMUL} \)-algebra. We first note that the nomenclature of the prelinearity condition is explained by the following subdirect representation theorem.

Proposition 4.1 Each \(\text{StAMUL} \)-algebra is a subdirect product of linearly ordered \(\text{StAMUL} \)-algebras.

Proof: Its proof is as usual. \(\square \)

We next show that classes of provably equivalent formulas form an \(L \)-algebra. Let \(T \) be a fixed theory over \(L \). For each formula \(\Phi \), let \([\Phi]_T \) be the set of all formulas \(\Psi \) such that \(T \models_L \Phi \iff \Psi \) (formulas \(T \)-provably equivalent to \(\Phi \)). \(A_T \) is the set of all the classes \([\Phi]_T \). We define that \([\Phi]_T \rightarrow [\Psi]_T = [\Phi \rightarrow \Psi]_T \), \([\Phi]_T \star [\Psi]_T = [\Phi \& \Psi]_T \), \([\Phi]_T \land [\Psi]_T = [\Phi \land \Psi]_T \), \([\Phi]_T \lor [\Psi]_T = [\Phi \lor \Psi]_T \), \(\bot = [F]_T \), \(\top = [T]_T \), \(\forall = [t]_T \), and \(\exists = [f]_T \). By \(A_T \), we denote this algebra.

Proposition 4.2 For \(T \) a theory over \(L \), \(A_T \) is an \(L \)-algebra.
Proof: Note that A2 to A6 ensure that \(\land, \lor, \) and \(\rightarrow \) satisfy (I) in Definition 3.1; that A9 to A11, and the theorem (IT) \((\phi \rightarrow \psi)_t \rightarrow ((\phi \land \chi) \rightarrow (\psi \land \chi)) \) ensure that \(\land \) satisfies (II) (a) - (d); that A14 ensures that (III) holds; and that A15 ensures that (pl') holds. It is obvious that \([\phi]_T \leq [\psi]_T \) iff \(T \vdash_L \phi \leftrightarrow (\phi \land \psi) \) iff \(T \vdash_L \phi \rightarrow \psi \). Finally recall that \(A_T \) is an L-algebra iff \(T \vdash_L \psi \) implies \(T \vdash_L \psi \), and observe that for \(\phi \) in \(T \), since \(T \vdash_L \phi \rightarrow \phi \), it follows that \([t]_T \leq [\phi]_T \). Thus it is an L-algebra. \(\square \)

Theorem 4.3 (Strong completeness) Let \(T \) be a theory, and \(\phi \) a formula. \(T \vdash_L \phi \) iff \(T \vdash_L \phi \) iff \(T \vdash^1_L \phi \).

Proof: (i) \(T \vdash_L \phi \) iff \(T \vdash_L \phi \). Left to right follows from definition. Right to left is as follows: from Proposition 4.2, we obtain \(A_T \in \text{MOD}(L) \), and for \(A_T \)-evaluation \(\nu \) defined as \(\nu(\psi) = [\psi]_T \), it holds that \(\nu \in \text{Mod}(T, A_T) \). Thus, since from \(T \vdash_L \phi \) we obtain that \([\phi]_T = \nu(\phi) \geq T, T \vdash_L t \rightarrow \phi \). Then, since \(T \vdash_L t \), by (mp) \(T \vdash_L \phi \), as required.

(ii) \(T \vdash_L \phi \) iff \(T \vdash^1_L \phi \). It follows from Proposition 4.1. \(\square \)

5. L\(\forall \): the first order extension of \(L \)

The completeness theorems for fuzzy predicate logics presented in [11, 14] may generalize for the present situation.

A trivial generalization of those of section 6 in [11] and Chapter V in [14] gives the notions of a language, its
interpretations, and formulas for $\forall \forall$ as follows:

Given a linearly ordered L-algebra A, an A-interpretation, i.e., an A-structure, of a language consisting of some predicates $P \in \text{Pred}$ and constants $c \in \text{Const}$ is a structure $M = (M, (r_P)_{P \in \text{Pred}}, (m_c)_{c \in \text{Const}})$, where $M \neq \emptyset$, $r_P : M^{ar(P)} \rightarrow A$, $\text{ar}(P)$ the arity of P, and $m_c \in M$ (for each $P \in \text{Pred}$, $c \in \text{Const}$).

Let L be a predicate language and let M be an A-structure for L. An M-evaluation of object variables is a mapping e assigning to each object variable x an element $e(x) \in M$. Let e, e' be two evaluations. $e \equiv x e'$ means that $e(y) = e'(y)$ for each variable y distinct from x.

The value of a term given by M, e is defined as follows: $|x|_{M, e} = e(x)$ and $|c|_{M, e} = m_c$. The (truth) value $|A|^A_{M, e}$ of a formula (where $e(x) \in M$ for each variable x) is defined inductively: for A being $P(x, \ldots, c, \ldots)$, $|P(x, \ldots, c, \ldots)|^A_{M, e} = r_P(e(x), \ldots, m_c, \ldots)$, the value commutes with connectives, and $|\forall x A|^A_{M, e} = \inf\{|A|^A_{M, e} : e \equiv x e'\}$ if this infimum exists, otherwise undefined, and similarly for $\exists x$ and sup. M is A-safe if all infs and sups needed for definition of the value of any formula exist in A, i.e., $|A|^A_{M, e}$ is defined for all A, e.

Let A be a formula of a language L and let M be a safe A-structure for L. The truth value of A in M is $|A|^A_M = \inf\{|A|^A_{M, e} : e \in M\}$-valuation.

A formula A of a language L is an A-tautology if $|A|_M \geq \top_A$ for each safe A-structure M, i.e., $|A|^A_{M, e} \geq \top$ for each safe A-structure M and each M-evaluation of object variables.

The axioms of $L \forall \forall$ are those of L plus the following set of
axioms for quantifiers (taken by Hájek [14] as those of the basic predicate logic BL ∀):

\[
\begin{align*}
(∀1) & \quad (∀x)A(x) \rightarrow A(t) \quad (t \text{ substitutable for } x \text{ in } A(x)) \\
(∃1) & \quad A(t) \rightarrow (∃x)A(x) \quad (t \text{ substitutable for } x \text{ in } A(x)) \\
(∀2) & \quad (∀x)(A \rightarrow B) \rightarrow (A \rightarrow (∃x)B) \quad (x \text{ not free in } A) \\
(∃2) & \quad (∃x)(A \rightarrow B) \rightarrow ((∃x)A \rightarrow B) \quad (x \text{ not free in } B) \\
(∀3) & \quad (∃x)(A \lor B) \rightarrow ((∃x)A \lor B) \quad (x \text{ not free in } B)
\end{align*}
\]

Rules of inference for L ∀ are MP, AD, and generalization (GN), i.e., from A infer (∀x)A. (Note that if L ∀ has involutive negation (i.e. L ∀ is IL ∀), one quantifier is definable from the other one and the negation ¬, for instance, (∃x)A := ¬(∀x)¬A. Thus the above set of axioms for quantifiers could be simplified, i.e., (∀3), (∃1), and (∃2) become provable as in the Łukasiewicz predicate logic L ∀ (cf. see Remark 5.4.2 in [14]).

Proposition 4.1 (i) The axioms (∀1), (∀2), (∀3), (∃1), and (∃2) are A-tautologies for each linearly ordered L-algebra A. (ii) The rules MP, AD, and GN preserve A-tautologyhood.

Proof (i) By Lemmas 5.1.9 in [14].

(ii) MP and GN are by Lemma 5.1.10 in [14]. Thus, for L ∀ we need just to consider that the rule AD preserves A-tautologyhood. For AD, we show that

(1) for any formulas A, B, safe A-structure M, and evaluation e, \[A]^A_{M,e} \land [B]^A_{M,e} \leq [A \land B]^A_{M,e} \] thus, if \[A]^A_{M,e}, [B]^A_{M,e} \geq T_{eM}, \] then \[[A \land B]^A_{M,e} \geq T_{eM}, \] and

(2) consequently, \[A]^A_{M} \land [B]^A_{M} \leq [A \land B]^A_{M} \] thus if A, B
are \(\geq \, T_{\mathbf{M}} \)-true in \(\mathbf{M} \), then \(A \land B \) is.

(1) is as in propositional calculus. To prove (2) put \(|A|_w = a_w \), \(|B|_w = b_w \), and \(\inf_w a_w = b \). We have to show that
\[\inf_w (a_w \land b_w) \leq \inf_w (a_w \land b_w) \] (indices A, M deleted, \(w \) runs over all evaluations \(\equiv \, e \)). Since \(L \forall \) proves \((\forall x)(A \land B) \leftrightarrow ((\forall x)A \land (\forall x)B) \) (see Corollary 5.1.22 (17) in [14]) and thus
\[\inf_w (a_w \land b_w) = \inf_w a_w \land \inf_w b_w, \] it is immediate.

Definitions of a theory \(T \) over \(L \forall \) are almost the same as \(L \). We need just to consider such definitions in \(\mathbf{M} \). Let \(A \) be a linearly ordered \(L \)-algebra and let \(\mathbf{M} \) be a safe \(\mathbf{A} \)-structure for the language of \(T \). \(\mathbf{M} \) is an \(\mathbf{A} \)-model of \(T \) if \(|A|^\mathbf{M} \geq \, T_{\mathbf{M}} \) in each \(A \in T \). \(T \) is linear if for each pair \(A, B \) of formulas, \(T \vdash A \rightarrow B \) or \(T \vdash B \rightarrow A \). Then, Proposition 4.1 ensures that \(L \forall \) is sound w.r.t. linearly ordered \(L \)-algebras.

Proposition 4.2 (Soundness) Let \(T \) be a theory in the language of \(T \) over \(L \forall \) and let \(A \) be a formula of \(T \). If \(T \vdash_L A \), then \(T \vdash_{L} A \), i.e., \(|A|^\mathbf{M} \geq \, T_{\mathbf{M}} \) for each linearly ordered \(L \)-algebra \(A \) and each \(\mathbf{A} \)-model \(\mathbf{M} \) of \(T \).

Proof By induction on the length of a proof. □

To investigate completeness for \(L \forall \), we have the same definition on "consistency" of a theory \(T \) as in \(L \). We moreover define the Henkinness of \(T \) (over \(L \forall \)) as follows: \(T \) is Henkin if for each closed formula of the form \((\forall x)A(x) \) unprovable in \(T \),
i.e., $T \not\vdash (\forall x)A(x)$, there is a constant c in the language of T such that $A(c)$ is unprovable in T, i.e., $T \not\vdash A(c)$.

For each theory T over $L\forall$, let A_T be the algebra of classes of T-equivalent closed formulas with the usual operations. It is clear that A_T is an L-algebra. Let T be Henkin. Then the canonical A_T-structure is safe and we have $[\phi]_T = [\phi]^A_M$ and so M_T is an A_T-model of T. Hence, since each theory can be extended into linear Henkin theory, the completeness for $L\forall$ below is straightforward.

Lemma 4.3 For each theory T and each closed formula A, if $T \not\vdash A$, then there is a linear Henkin supertheory T' of T such that $T' \not\vdash A$.

Proof See Lemma 5.2.7 in [14].

Lemma 4.4 For each linear Henkin theory T and each closed formula A, if $T \not\vdash A$, then there is a linearly L-algebra A and A-model M of T such that $[A]^A_M < T_M$.

Proof By Lemma 5.2.8 in [14].

By using Lemmas 4.3 and 4.4, we can show the completeness for $L\forall$ as follows.

Theorem 4.5 (Completeness) Let T be a theory over $L\forall$ and let A be a formula. $T \vdash_{L\forall} A$ iff $T \vdash_{L} A$.
References

40, pp. 159-163.

[27] Yang, E., "Remarks on (binary) MICA operators",
Eunsuk Yang

manuscript.

Faculty of Liberal Arts and Teacher Education
University of Seoul
Email: eunyang@uos.ac.kr
Non-associative fuzzy-relevance logics: strong t-associative monoidal uninorm logics

Eunsuk Yang

이 논문에서 우리는 내포 연연 &의 결합성을 가정하지 않는 weakening 없는 uninorm 논리들의 일반화를 비결합 퍼지-연관 논리로 다룬다. 먼저 강한 t-결합 monoidal uninorm 논리 STAMUL과 그것의 도식적 확장들이 비결합 퍼지-연관 명제 논리로 소개된다. (여기에서 비결합성은 고전 논리에서와 달리 &가 더 이상 결합적이지 않는 것을 의미한다.) 주어진 체계들에 상응하는 대수적 구조가 정의되고, 그 체계들에 대한 대수적 완전성 결과가 제공된다. 다음으로 여기서 도입된 명제 체계들에 상응하는 술어 논리가 고려된다.

[주요어] 대수적 완전성, 퍼지-연관 논리, RM.