제르멜로와 공리적 방법

박우석

【요약문】본 논문은 제르멜로가 집합론을 공리화함에 있어서 할버트의 공리적 방법을 차용하였다는 논리 부합관으로 받아들여져 온 가정 자체를 검토하고자 한다. 그들이 공유했고 가정하는 공리적 방법의 설계가 무엇이고 그것은 과연 어느 시기에 정립된 것인지에 대한 문제를 처음으로 공리적 방법에 관한 제르멜로와 할버트의 사상에 어떻게 상호작용하며 발전해 나갔는지를 철학적 반성을 통해 규명하려는 것이다. 그 결과 본 논문에서는 이러한 사상의 전개에서 제르멜로가 집합론 자체의 공리적 방법에 관하여 할버트와 상당히 다른 전형을 지녔음을 가능성을 확연히 한 것이다. 이러한 결과는 집합론의 역사와 공리적 방법의 역사, 그리고 나아가서 수학철학 전반에 걸쳐 상당한 함축을 지닌 수밖에 없다고 본다.

【주요어】공리적 방법, 제르멜로, 할버트, 토대의 상호작용, 임의적 적의, 집합 개념

1. 서론

주지하듯, 제르멜로는 1908년 최초의 공리적 집합론의 체계를 수립하였고, ZFC는 오늘날 공리적 집합론의 표준적 체계로서 부등의 지위를 누리고 있다. 집합론이 지니는 특별한 위상이 수학 전체의 토대로서의 역할에 있다. 그 외에 힐버트학파의 공리적 방법을 탐구하고자 하는 전체 연구에서 공리적 방법에 관한 제르멜로의 철학적 견해는 특별한 관심의 대상이 될 수밖에 없다. 그러나 능합 계도 이에 관한 연구는 국내외를 막론하고 저국히 의도한 실정이다.

이러한 실정이 초래된 때는 물론 몇 가지 수궁할 만한 이유가 있다. 첫째, 제르멜로가 집합론을 공리화하게 된 동기는 단순히 리설희의 역할을 회피하는 데 있었다는 해석이 만만해 있다. 둘째, 제르멜로가 힐버트의 전통에 근의함으로써 공리적 방법에 관한 한 힐버트의 생각을 그대로 차용했다는 해석이 지배적이다. 셋째, 제르멜로는 수학자로서 제게 공리적 집합론의 존재론적 문제에 관하여 힐버트와 차별화되는 견해가 발견된다는 점에서 그것은 방법론적 문제들로부터 분명히 구별된다는 견해가 개진되어 왔다.

2) Taylor(1993), 543 참조. "There is little doubt that Zermelo is following Hilbert methodologically. It is equally clear, however, that he takes nothing from Hilbert philosophically". (강조는 테일러의 것).
3) 위의 각주 2 참조. 아울러 Taylor(1993), 545 참조.
그러나 이러한 통상적인 이해 방식에는 많은 문제점이 있다. 우선 통상적인 논리학자와 수학자에서는 혼란의 역할이 가진 소위 수학의 위기가 지나질 만큼 강조됨으로써 그 보다 더 중요한 수 있음 제르맹으로의 다른 동기를 이해하려는 시도가 최소했다. 또한 헨리에르가 현대의 공리적 방법의 역사는 확실하고 그 유래가 되는 [기하학의 기초](1899) 저술하였을 뿐만 아니라 훗날(특히 1920-30년대) 증명이론과 메타수학을 창조함으로써 공리적 방법에 관한 현대적 논의의 중심에 서 있다는 것은 물론 사실이지만, 역으로 제르맹에 의한 집합론의 공리화가 공리적 방법에 관한 헨리에르의 구상을 구현하는 사례일 수도 있을 뿐만 아니라 그의 제도가 공리적 방법의 연구가 전개되는 과정에서 핵심적 위치를 점했을 수도 있다는 점을 강조해서는 안 된다. 제르맹에게서 표면상 철학적 논의를 발전하기 힘들다고 하더라도, 그의 공리적 집합론의 내용 자체로부터 철학적 입장은 추출할 가능성을 직접적으로 해제할 수 없고, 선택 공리주의 중심으로 그와 그들 비판하는 수학자들 간에 전개된 논쟁은 그의 철학적 입장에 이해하기에 충분한 소재가 된다. 나아가서 존재론적 문제와 방법론적 문제를 명확하게 구별할 수 있다는 가정 자체가 대단히 의심스러우며, 최소한 전자에서의 차이가 후자에서의 차 이를 유발할 가능성에 유의하여야 할 것이다.

공리적 방법에 관한 제르맹의 견해가 속분의 주목을 받지 못한 이유를 이렇게 반성할 경우 뚜렷이 부각되는 흥미로운 사실은 제도로 위에서 기존한 네 가지 이유들은 서로 밀접하게 연관되어 있고 결국 헨리에르 제르맹의 공통점과 차이 양자 모두가 균형 있게 이해되고 있지 못하다는 데 기인한다는 사실이다. 그러한 관점에서 헨리에르학파와 공리적 방법이라는 큰 맥락 안에서 제르맹으로가
칸토의 소박 집합론을 공리화하는 작업을 수행함에 있어서 어떤 구체적인 동기와 방법론적 전략, 그리고 철학적 입장을 지냈었는지 를 다시 묻는 일은 단순히 역사적 호기심을 충족시키는 데 그치는 것이 아니라 현재 진행 중인 고도의 집합론 연구의 실제를 이해하고 거기에 바탕을 두는 수학적 연구를 수행하는 데 있어 결정적으로 중요한 단서가 될 수 있다고 판단한다. 토착대로 라셀의 역설이 야기한 수학의 위기가 수학기초론을 탄생시켰다고 이해할 경우에도, 20세기 수학기초론의 공과를 재화미하는 작업에서 그 위기를 진정시키는 데 최대의 공헌을 한 게르하르트의 공적을 비판적으로 재평가하는 데 중요성은 재론의 저자가 없다고 여겨진다.

다행스럽게도 최근 유고(遺稿)와 서신, 그리고 미출간 강의록에 바탕을 두고 게르하르트의 사상을 재조명하려는 시도가 나타나기 시작했다. 지방으로 인해 게르하르트가 1910-20년대에 거의 논문 발표를 하지 못했다는 점과 헬브스트가 1908년에서 1917년 사이에 수학기초론에 관심의 초점을 두지 않았을 뿐만 아니라 게르하르트의 공리적 집합론의 체계에 대해 공식적인 논평을 기재한다는 점은 사가(史家)의 평가를 불리어있기에에 부족함이 없는 상식이다. 최근의 연구가 이러한 미스터리를 상당 부분 불식시키줄 것으로 기대되고, 실제로 이에 종속의 오해나 편파적 해석에 대한 이에 제 기가 제도 이루어졌다고 할 수 있다. 그러나 이러한 제조명의 시도를 또한 일정한 한계를 노출하고 있다고 보인다. 왜냐하면 헬브스트와 게르하르트의 차이를 존재론적 문제에 국한시키고 공리적 방법에 관한 한 이견이 없는 것으로 간주하고 있기 때문이다. 그러나 그들이 공유했다고 가정되는 공리적 방법의 실제가 무엇이고 그것은 과연 어느 시기에 정립된 것인가? 이러한 문제 제기를 회피하고, 6)
6) 필자는 여기서 최근의 소위 과델 프로그램을 주로 염두에 두고 있다.
결과적으로 [기하학의 기초]를 충진한 뒤로부터 증명이론을 표방하기 시작하는 시기에 이르기까지 공리적 방법에 관한 힐버트의 사상에 큰 변화가 없다고 암묵적으로 가정하는 것은 수학사 상의 한 혁명적 사례에 대한 심도 있는 이해의 기회를 스스로 포기하는 것이 아닐까? 본 연구는 이러한 문제의식에서 출발하여 공리적 방법에 관한 제르맹보와 힐버트의 사상이 어떻게 상호작용하며 발전해 나갔는지를 철학적 반성을 통해 규명하고자 한다.

필자의 논술 전략은 다음과 같다. 제2절에서는 1930년을 전후하여 발표된 제르맹보의 후기 논문들로부터 포착된 힐버트와 제르맹보의 차이점을 정리한 최근의 연구에서 주어진 단서들을 보고할 것이다. 이 차이점들은 물론 공리적 방법의 정체를 구명해주는 데 도움이 되는지 여부에 따라 신별적으로 논의의 대상이 될 것이다. 제3절과 제4절에서는 공리적 방법에 관한 힐버트와 제르맹보의 의견 차이가 단지 제르맹보의 후기 사상에 국한되는 것이 아니라 흐름 이론 시기까지 소급될 가능성을 탐색하려 한다. 이를 위해 제3절에서는 우선 1899년에서 1917년에 이르는 기간 동안 집합론에 관한 테도와 공리적 방법에 관한 임상 양자 모두에서 힐버트의 사상은 상당한 변화를 겪었다는 점을 부각시킬 것이다. 먼저 그러한 변화에 영향을 받지 않아야 마땅한 핵심적 요소로서 암묵적 정의에 관한 힐버트의 견해에 대한 통상적 이해를 정리할 것이다. 다음에는 유공리드 이론의 공리적 접근법과 힐버트의 공리적 방법의 격연 통상적 이해처럼 힐버트에게서 확인히 구별되는지에 관해의 문을 제기하고, 프레게/힐버트 논쟁은 아직 종료되지 않았음을 시사하고자 한다. 또한 다양한 수학과 자연과학의 분야에 공리적 방법을 적용하는 일이 동시에 해당 분야의 토대의 성화라고 본 힐버트의 견해를 논의할 것이다. 마지막으로 제르맹보-리셀 역설이 힐버트의 사상에 어떤 변화를 야기했는지를 간략하게 논의할 것이다.
제4절에서는 제르멜로가 1908년에 발표한 생동이격 논문들을 바탕으로 제3절에서 논의한 헨버트의 전해에 비추어 당시 제르멜로가 공리적 방법에 판매 어떤 입장을 지냈던 것인지의 밝혀 보고자 한다. 우선 제르멜로·역설에 대해 큰 의미를 부여하지 않은 제르멜로가 집합론을 공리화한 동기는 자신의 정열 정리의 확고히 하고자 했던 데서 찾는 무언의 해석을 논의할 것이다. 다음에는 제르멜로의 환원론적 경향과 헨버트의 모델론의 상호이 테일러의 주장처럼 철학적 전해의 차이인 데 그치지 않고 방법론적 차이를 수반하게 마련이라는 점을 논변할 것이다. 그리고 그 바탕 위에서 수학기 초론으로서의 집합론의 위상에 관한 헨버트와 제르멜로의 입장들을 가능해 볼 것이다. 동시에 집합론이론의 특정 수학의 분야가 공리화되기 위한 선결 조건은 논의함으로써 제르멜로의 작업을 칸토트의 집합론의 토대를 심화하는 작업으로 이해하고자 한다. 자연스레 공리적 방법에 관한 제르멜로의 입장은 유클리드적인 증재의 점근 법과 헨버트의 공리적 방법 사이의 여건이에 놓인다는 점을 논증할 수 있을 것이다. 과장자는 엄밀한 정의에 관하여 헨버트와 차별화되는 제르멜로의 사상이 존재하는지 여부를 확정하는 일이 결국 본 논문의 궁극적 과제라 여기므로 제4절의 결론부를 이 과제에 비치려 한다. 마지막으로 제5절에서는 본 논문에서 다루지 못한 향후의 과제 몇 가지를 지적해본 것이다.

2. 제르멜로의 후기 사상과 헨버트 프로그램 사이의 관리

홍미롭게도 헨버트는 1908년 제르멜로가 최초의 공리적 집합론의 체계를 제시한 시점으로부터 십 년 가까이 침묵하다가 1917년의 유명한 강연에서야 마침내 제르멜로가 이론 성과에 관한 자신의
의 전해를 공식적으로 표명했다. 그 참혹의 원인에 관해서는 물론 여러 가지 가설들이 성립할 수 있다. 예컨대, 그 기간 동안 선택 공리에 관한 논쟁이 치열하였다면, 헬버트 자신의 관성의 과학기초론에서 떠나 물리학의 공리화에 숨겨 있었다거나, 점시 동안이지만 헬버트가 러셀의 논리주의에 경도했었다든가 하는 사실에서 설명을 구할 수 있을 것이다. 그러나 1917년까지 헬버트와 제로멜로의 관계는 인간 관계에 있어서 학문적 입장에 있어서 대단히 친근한 것이었다고 보아 무리가 없을 것이다.

그러나 제로멜로가 다시 한번 수학기초론 분야에서 활발한 연구 활동을 벌인 1920년대 말에서 1930년대 초에 이르면 사정이 전혀 달라진 것을 알게 된다. 최근 핏하우스는 “Pro and Contra Hilbert: Zermelo's Set Theories”라는 흥미로운 제목의 논문에서 이 점을 잘 부각시킨 바 있다. 핏하우스에 따르면, 이 시기의 제로멜로는 당시의 수학기초론에서의 거의 모든 입장들에 대해 반대하였으며, 특히 헬버트의 메타수학으로 나아가리는 움직임을 주 종하지 않았다고 한다. 메타수학을 표방하면서 헬버트는 중대의 존 재론적 인식론적 중립성을 포기하고 브라우어의 적판주의에 접근하는 구상적 방식의 수학기초론을 제안한 데 반해, 제로멜로는 수학에 대한 여하한 유한주의적 접근도 집합론에서의 스콜렘주의의 표현으로 보고 물리쳤다는 것이다. 제로멜로는 대안으로서 그가 "무한의 논리"라 부르는 바에 도움을 받아 집합들의 무한 요소의 정당화를 시도하면서 자신의 관념론적 접근법을 유지했다는 것이 핏하우스의 주장이다. 10)

10) Peckhaus(2005), 3.2 참조.
니라 양자의 의전 대립의 양상을 지적하는 데 그쳤을 뿐 그 원인을 추구하고 설명하려는 시도조차 보이지 못했다. 나아가서 양자의 차이가 공리적 방법에 관하여 어떤 의미를 지니는지에 관해 우리는 페호우스의 보고로부터 아무런 정보도 얻지 못한다. 그런 점에서 본 논문의 목적을 위해서는 할례의 보고가 필요히 더욱 유익하다.\(^{11}\)
그는 이 시기의 케르멜로가 공리 체계들에 관하여 힐버트의 입장으로부터 극단적으로 이탈했다는 점뿐만 아니라 이러한 사실이 드러내어 주는 바는 다음 아니라 공리적 방법의 결함이라는 점을 적시했던 때문이다.

케르멜로가 공리 체계들에 관하여 힐버트의 입장으로부터 극단적으로 이탈한 증거로 할례는 케르멜로 (1930)의 다음과 같은 구절을 인용한다:

"우리는 공리 체계는 비질적적(non-categorical)인데, 그것은 이 경우 불리한 점이 아니라 오히려 유리한 점이다. 왜냐하면 바로 이 사실에 집합론의 임의단 우선과 무제한의 적용 가능성이 의존하기 때문이나 ... 가장 작은 무한 경의역(domain), 즉 "카르트리안(Cantorian) 정의역"에 관한 것을 한정하는 것이 관행이지만, 나는 이렇게 하는 데 따르는 유리한 바를 별로 알지 못한다. 오히려 과학으로서 집합론은 최대의 일반성을 지닌 체로 개발되어야 하고, 그런 경우 개별적 모델들의 비교 연구는 특수한 문제로서 수행될 수 있을 것이다.\(^{12}\)

또한 할례호는 다음과 같은 인용문에 근거를 두고 케르멜로의 논의가 힐버트의 공리적 방법의 결함을 드러내어 주는 것이라는 해석을 제시하고 있다.

과학에 반동적인 이들과 언타-수학자들은 집합론에 반대하는 그

\(^{11}\) Hallett(1995b), 63-65 참조.
인용한 단락들에서 표현된 합집의 전제가 지나는 합축을 충분히 이해하기 위해서는 Zermelo(1908a) 이후 1930년에 이르기까지의 공리적 집합론의 역사 전체가 소관되어야 할 것이고, 그것은 분명히 본 논문의 범위를 넘는 과제이다. 제르메로의 전기 사상을 이해하는 데 도움이 될 단서를 그의 후기 저술들에서 취한 위의 인용문들로부터 구하고자 하는 한정된 목표를 염두에 둔 때 우리가 주목해야 하는 점은 공리적 집합론이 절대적이지 못하다는 데 기인하는 스콜렘의 비판에 직면하여 제르메로가 헨버트의 공리적 방법의 결과를 양시하는 듯한 주장은 하고 있다는 사실이다. 다시 말해서, 제르메로는 자신의 공리적 집합론과 집합론 일반을 지키기 위

3. 1900년에서 1917년 사이 공리적 방법에 관한 힐버트의 사상의 발전

이미 지적되었듯이, 집합론의 공리화에서 세르메르는 힐버트 스 oran의 공리적 방법론을 채택한 것으로 논리 인식되고 있다. 그리고 힐버트에게 깊은 바에 대한 세르메르의 자선적 고백이이나 4) 세르메르의 공리적 집합론이 공리적 방법의 공통적 적용 사례라는 힐버트의 찬양 5), 그리고 양자의 전문 관계를 포함한 주변 정황 6) 모두가 이러한 인식을 지지해 주는 것으로 보인다. 세르메르의 후기 사상이 힐버트 프로그램과 상당한 차이를 보인다는 사실은 이후 세르메르의 정기 사상 또한 같은 시기의 공리적 방법론에 관한 힐버트의 사상과 일치 여부에 관하여 강렬한 호기심을 불러일으킨다.

3.1. 힐버트의 임무적 점의 개념

유클리드 기하학의 공리체계로까지 소급될 넓은 의미의 공리적 방법론 구미적인 힐버트적 공리적 방법론의 결정적 특징은 어디에서 찾아야 하는가? 이러한 물음에 대한 통상적인 답은 원초적 관념들

4) Peckhaus(2005), 3.2 참조.
의 의미는 공리화를 통한 암묵적 정의에 의해 얻어진다는 견해에 호소함으로써 제시되는 것으로 보인다. 예전에 필리(F. A. Muller)는 웨버가 공리화를 명시적 정의와 정의가 없는 것 사이의 어떤 것, 즉 암묵적 정의를 얻는 것으로 간주했다고 주장하면서 프레게와의 서신 교환을 통한 논쟁 중에 웨버가 피력한 다음과 같은 견해를 인용한다.

제 의견으로는 한 개념이 오직 그것이 다른 개념들에 대해 갖는 관계들에 의해서만 논리적으로 고정될 수 있습니다. 특정 관습이 정의되는 이 관계들을 제의 공리들이라 부르고, 따라서 공리들은 (아마도 개념들에 이름들을 부여하는 명제들과 더불어) 그 개념들의 정의들이라는 견해에 도달합니다. 17)

또한 필리는 칸토로의 집합론의 공리화에서 온 논리만이 명시적으로 동일한 견해를 취했다는 점을 지적한다:

'집합'으로 우리는 여기서(공리화 방법의 의미에서) 그것에 관해

공리들로부터 따라나오는 것보다 어떤 것도 더 알지 못하고 어떤 것도 더 알기 힘들지 않는 어떤 것이나 이해한다.\(^{18}\)

그리고 월리는 양목적 정의에서는 피정의함은 있으나 정의함은 없으며 그 대신 새로운 개념을 다른 개념들과 더불어 사용하는 다양한 규칙만이 있다고 설명한다. 나아가서 월리는 수학에 국한할 경우 비트겐슈타인의 ‘사회적’ 의미 개념이 힐버트의 ‘합리적’ 양목적 정의 가능성 개념과 조화롭다고 주장한다. 그는 그 근거로 ‘수학의 어떤 분과에서 받아들여진 공리들은 논리적 연역 규칙들과 더불어 이 분과의 수학자들의 커뮤니티에 의해 현실적으로 사용되는 바와 같이 원초적 관념들의 엄밀한 사용과 거래’한다는 점을 들었다.\(^{19}\)

3.2. 유클리드적 공리체계와 힐버트적 공리적 방법: 끝나지 않은 프레게/חיל버트 논쟁

공리적 방법의 역사에서 힐버트의 공리적 방법이 혁명적 성취를 이룬 것으로 이해할 때, 힐버트의 기하학의 기초(1899)를 분수령으로 거론하는 것은 일종의 보편적 관행이고, 이에 따라 이 책에서 힐버트의 공리적 방법의 핵심 사상이 완성된 형태로 제시되었고 가정되는 것으로 보인다. 그러나, 널리 이해되고 있는 바에 따라 전향에서 스케치한 힐버트의 공리적 방법의 핵심으로서의 양목적 정의의 개념은 1899년경에 완성된 이후 계속 유지되었어야 한다. 양목적 정의의 개념을 포기할 경우 유클리드 이해 종래의 공리적 접근법과 힐버트의 논장으로서의 공리적 방법의 구별 자체가 두의 미해결 것이기 때문이다. 또한 양목적 정의의 개념이 포기되지는 않았다고 하더라도 지나칠 정도로 개념적인 변화가 있었다면 “힐버트

\(^{18}\) Neumann(1925), p. 36; Muller(2004), 429.

\(^{19}\) Muller(2004), 429.
트의 공리적 방법을 운용하기 위해서는 최소한 대단히 세심한 시기 구분이 필수적으로 요구될 것이다.

이러한 문제 의식은 최근 마이어(Majer)가 "헬바르트가 유클리드의 공리적 접근법으로부터 자신을 분리시켰고, 완전히 새로운 공리학 (axiomatics)을 목표로 했다"는 널리 받아들여진 견해는 무언가 잘못되었음에 논란을 일으켰다. 그 중 가장 적은 비판은 1915년 처음 기하학을 강의하기 시작했을 때 헬바르트는 그의 연구를 어떤 방향으로 이끌어 갈 것이지 알지 못했지만, 파슈(Pasch)의 책을 읽지마자 18, 19 세기 동안 대단히 무시되었던 유클리드의 공리적 관점을 부흥시키고 이런 방식으로 기하학을 새로운 논리적 완벽성으로 인도한다고 하는 그의 목표가 분명해졌다고 한다. 그 스스로 "공리적 방법"이라 부르개되는 바에 대한 견해는 이에로부터 있었던 것이 아니고 연구해 나가라는 과정에서 조금씩 나타난 것이다. 그런데 이러한 오해로 인해 유클리드의 공리적 접근법을 부정한 헬바르트의 노

력이 지난 진정한 의미는 올바르게 파악되지도 못했고 왜전히 이해되지도 못했다고 본다.\(^2\)

1세기 이전의 시각이 훨씬 지금 현대 수학의 방식으로서 공리적 방법에 대해 우리는 명쾌한 이해하고 있는가? 공리적 방법에 관한 한 헨리트 이전의 이후가 전혀 다르다고 엄청 세뇌되기 했지만, 상상은 헨리트의 공리적 방법으로 유클리드 이래의 공리적 접근법도 이해하지 못하고 이해하려 노력하지도 않는 무지 몽미주의가 빠져 있는 것은 아닌가? 마이어의 문제 제기에 그동안 이런 반성을 하게 될 때 우리는 즉각적으로 우리가 너무도 오랫동안 절발을 잃지 않고 프리게/헨리트 논쟁을 방기해 왔다는 점을 깨닫게 된다.\(^2\)

주거하듯, 프리게가 헨리트에 제기한 불평, 의문, 그리고 비판은 바로 유클리드 이래의 공리적 접근법의 관점에서 저기에서 밝혀나는 헨리트의 새로운 공리적 방법의 측면들에 대해 단지한 것이기 때문이다.

예전날, 프리게는 헨리트가 정의(예전날, “사이의”의 정의)를 제공하지 않았고, 공리들이 정의에 속하는 점들을 대신 지고 있다고 불평했다. 그리고 나서 프리게는 의미가 아직 주어지지 않은 단어의 의미를 정의가 구체화해야 한다는 것, 정의는 의미가 이미 알려진 다른 단어들을 사용해야 한다는 것, 정의와 단어 공리와 정리는 그것의 뜻과 의미 또는 그것이 어떤 사상의 표현에 기여하는 바가 이미 완전히 주어지지 않은 단어나 기호를 포함해서는 안 된다는 것, 그리고 공리는 진리를 표현해야 한다는 것 등을 주장했다.\(^3\)

이 편지와 관련하여 샐리로는 다음과 같이 앞들하게 생각을 정리

한다.
프레게에 따르면, 공리들은 전리 표현해야 하고 정의들은 특정 용어들의 의미를 부여하고 외연을 확정해야 한다. 암묵적 정의로는 이 과정을 중 어느 것도 생략되지 않는다.24)

할랫도 베르나이스를 인용하면서 힐버트 이전 공리 체계에 관한 표준적 견해와 달리 힐버트에게서는 공리들이 더 이상 전리가 아닐 뿐만 아니라 착이거나 거짓일 수 있는 판단들이 아니며 심지어는 전체 공리 체계도 전리 표현하지 않는다는 점을 강조한다.25) 할 lett은 공리들이 전리값을 지니는지에 관한 이러한 견해 차이는 근본적으로 공리의 자위에 관한 견해 차이에 기인한다고 본다. 공리들이 참이라고 가정할 경우 그들은 공리들이 안에 등장하는 원초적 개념들 간의 관계에 관한 전리들임 것이므로 그 원초적 개념들을 확정할 수 있는 보편 논리학이 추구되게 된다면, 공리들이 참이라는 가정은 폐기하고 나면, "이론의 전리에 앞서 원초적 개념들에 관해 아무런 이야기도 할 필요성이 없기" 때문이다.26) 한편 지시체의 확정성과 관련해서도 할랫에게서 아주 유용한 논의를 찾아볼 수 있다. 예컨대, 할랫에 따르면, 힐버트가 비-논리 상황 (non-logical constant)에 부여하는 "지시체 독립성"은 뜻이 지시체를 결정하는 프레게의 이론을 묻어치는 것이 된다. 그리고 힐버트는 지시체 독립성이 공리들의 전리 문제에도 적용되어야 한다고 본다.27)

프레게/힐버트 논쟁의 추이를 면밀하게 살펴는 일은 본 논문의 범위를 벗어나는 일이다. 프레게/힐버트 논쟁의 여기서의 중요성은

다만 다음과 같은 두 가지 이유에서 찾을 수 있다. 첫째, 유클리드 이래의 증명을 정리적 접근법과 차별화하는 헬버트의 공리적 방법이 확립되기 위해서는 반드시 프레게/헬버트 논쟁에서 제기된 반론들에게 성립하는 답변이 주어져야만 한다.28) 둘째, 프레게에게 보낸 답변들이 주는 인상과 달리 프레게의 논쟁이 공리적 방법에 관한 헬버트의 견해에 가져다 준 변화에 (만약 그런 것이 있다면) 주목해야 한다.29)

첫 번째 이유를 정당화하기 위해서는 아마도 샤피로가 정식화한 증명들이 아직까지 유효하다는 점을 지적하는 것으로 충분할 것이 다. 예컨대, 공리들이 참여해야 한다는 생각은 직관에 비추어 적극적인 자연스러움 뿐만 아니라 합리적 정의를 외환하는 필리갈은 경우 별 다른 논의없이 채택되고 있기에 가치다.30) 둘째 이유를 정당화하기 위해서는 레스닉이 프레게/헬버트 논쟁을 논의하며 지적한 다음과 같은 사실을 상기하는 것으로 충분할 것이다.

“헬버트와 베르나이스의 Grundlagen der Mathematik, 제1권 (1934)에는 (고차 논리학을 폐기한 것을 제외하고는) 헬버트가 기하학을 순수 논리학으로 보완한 데 대한 프레게의 설명과 일치하는 공리적 방법의 기술이 나온다.”31)

28) Rowe(2000), p. 76: “While Hilbert failed to respond to Frege’s detailed critique, his silence should not be taken as a sign that he failed to comprehend the point of Frege’s criticisms”.
29) Peckhaus(1994), p. 99: “Above all, it is remarkable that in this passage Hilbert upholds the traditional view that axioms are propositions, since back in 1899, in a famous controversy with Frege over the “Grundlagen der Geometrie”, Hilbert already advanced the “modern” notion that the word “axiom” does not denote a proposition but rather a propositional function.”
이러한 논의가 가리키는 바는 자롯 자명하다. 프레게와의 서신 교환에서 표명된 헬버트의 입장은 어떤 면에서 헬버트의 진심을 대변한다기보다는 논쟁의 맥락에서 본의 아니게 노출될 경험성의 발로에 불과하고, 실제로는 헬버트 자신이 상당한 내적 갈등과 입 장 변경을 경험했을 가능성이 높후하다. 다시 말해서, 헬버트의 전 자, 입장은 새로운 헬버트적 공리적 방법의 창시자로서 우리가 헬 버트에 귀숙시키는 것보다 훨씬 더 유출리드 미래의 전통적 공리 적 접근법의 요소를 많이 유지하고 있었다고 여겨진다.

3.3. 공리적 방법의 적용과 토대의 성취

헬버트의 공리적 방법을 논의하는 데 있어 빼놓을 수 없는 또 한 가장 중요한 문제는 (수학과 논리학에 국한되지 않는) 인간의 지식 전체에 대한 헬버트의 인식론적, 방법론적 조망을 파악하고 그 안에서 수학적 차지하는 위치와 역할에 대해 깊이 있게 이해하 는 일이다. 이를 위해서는 다양한 수학적 자연과학의 분야에 서 공리적 방법의 적용에 대해 헬버트가 지녔던 생각을 이해해야 하고, 그것은 특정 분야에서의 공리의 선택 문제와 토대의 성화 문 제, 공리적 방법을 적용하는 데 있어서 수학적 자연과학에서의 차이를 이해하는 문제, 그리고 논리학 자체를 공리화하는 문제를 모두 포함할 수밖에 없다. 이인슈타인과 헬버트의 학문적 교류만 상기하더라도 우리는 쉽게 1899년에서 1917년에 이르는 기간 동안 헬버트가 대단히 완성하게 다양한 학문 분야의 공리화 작업을 시 도했으리라는 점을 짐작할 수 있다.32) 또한 이 시기에 헬버트는 널

32) Rowe(2000), p. 82 참조: “Yet while retreating on the foundational front, Hilbert widened his interest in axiomatics dramatically during the twelve-year period from 1905 to 1917. This period marked at once the pinnacle of achievement for Göttingen mathematics as well as for “Hilbert’s school”.

슨, 제르멜로 동과의 교류를 통해 논리적 방법이 고니는 철학적 문 제들에 심취하기도 했다. 그리고 브라우어와 바일 동과의 논쟁이나 제르멜로-라셀 역설이 힐버트에게 제공했을 적극적이고 기범적인 업적들이 끝이지 나오고 다양 한 수준과 방향에서 그것들 사이의 경쟁이 치열한 외중에서 힐버 트는 다양한 방식으로 그 모든 사건들의 중심부에서 있었던 것으 로 보인다.

Hilbert(1918)은 바로 그 치열한 학문적 싸움의 생생한 체험담이 자 최종 보고서의 면모를 보다고 할 수 있다. 이웃 국가가 잘 될 때 한 국가가 되는 이상이 동학들에서도 마찬가지로 성립한다는 홍미로운 유심으로 시작되는 이 강연문은 다음과 같은 시사적인 주장을 담고 있다.

"여기서 표현된 바대로 논리적 방법의 절차는 개발적 지식의 영 역들의 도대의 심화에 해당한다. 그것은 우리가 그것의 안정성 을 보존하면서 확장하고 더 높이 빠르게 올리기를 원하는 모든 건 축물에 반드시 필요한 심화이다."[33]

개발적 지식 영역의 토대의 심화 작업이 필수적으로 이웃의 지 식 영역으로의 확장을 요구한다고 주장하는 것으로 임하는 이 문 장은 대단히 홍미로운 화두를 제공하고 있는 것으로 여겨진다.

실제로 최근 힐버트 연구에서 가장 활발한 분야는 아마도 물리 학의 토대에 관한 힐버트의 견해의 제조명 작업이 아닌가 여겨지 고, 1900년 힐버트가 제시한 스물 세 가지 문제들 가운데 여섯 개 문제가 바로 물리학의 공리화 문제였다는 점만 상기하더라도 이것이 만시자란은 있으나 대단히 환영할 만한 일로 판단된다. 예컨대

마이어의 다음과 같은 논의는 대단히 생산적인 논의의 출발점이 될 잠재력을 보유하고 있다.

“한 가지 중요한 점은 즉각적으로 분명해야 마땅하다. 물리적 학문 분과학의 ‘공리적 근거’는 기하학에서의 공리적 접근법의 성공을 통해 동기를 부여받았다. 이것은 물리학에서의 ‘공리적 관점’이 대중 기하학에서와 최소한 ‘원리상’에 특갈어야만 한다는 것을 의미한다. 다시 말해서, 물리학에서의 공리적 방법의 적용은 오직 우리가 그것을 기하학에서의 ‘공리적 관점’의 확장 또는 진이으로 취급하는 한에서만 정당하다. 이것은 그것들이 정확히 특갈어야 한다는 것을 함축하지는 않는다. 기하학과 물리학의 차이 점들에 기인하는 특정의 차이점들이 있을 수 있다. 그 반면, 힐버트는 (기하학적 관점을 가진 예측부터) 기하학이 하나의 ‘자연과학’이고, 실제로 모든 자연과학들 중 가장 근본적인 자연과학이며, 이것이 공리적 관점이 물리학으로 ‘전이가능’해야 하는 더 깊은 이유라는 것을 깊이 확실했다.”14)

이제 필자는 Hilbert(1918)에 의거하여 마이어가 지적한 바들이 합추하고 있는 바들 중 몇 가지를 선별적으로 부각시킴으로써 3.2.에서 시사한 유클리드적 공리적 접근법과 힐버트적 공리적 방법의 연속성을 재상 확인하는 동시에 기본적으로 같은 공리적 방법이 공리화 대상인 개별 과학의 영역의 특수성에 따라 어떠한 차이를 보인다는 것인지를 조금 더 따져 몽울므로써 임의의 저식 영역에서의 공리화의 기본 요건을 가늠해 보고자 한다.

힐버트는 위의 인용문에 앞서 폭부한 예를 들어가며 주어진 저식의 분야에서 공리적 방법의 적용과 토대의 심화가 일어나는지를 설명하였다. 우선 힐버트의 설명에 따라 도식적으로 흐름을 파악해 보자.

(1) 어떤 (저식의) 분야의 수집된 사실들은 특정의 개념들에 의해

질서를위할 수 있다.
(2) 해당 (저식의) 분야의 개념들을 구축하는 데 있어 기저에 놓여 있는 몇 가지 두드러진 명제들이 있다. (그 명제들은 그것들 자체로 논리적 원리들에 따라 전체 음은 구축하는 데 충분하다.)
(3) 그 근본 명제들은 그 개별 (저식의) 분야의 공리를 간주할 수 있다. (그 분야의 발전은 이제 정적으로 개념들의 추가적 논리적 구축에 달려 있다.)

(4) 해당 (저식의) 분야의 토대 구축 문제는 해결되었다.
(5) 그러나 그 해결은 일시적인 데 불과하다. 그 (저식의) 분야에서 그 근본적인 공리적 명제들 자체를 근거지울 필요가 발생한다.\(^{35}\)

여기까지는 그냥 어렵지 않게 힐버트의 생각을 쫓아갈 수 있는데, 문제는 바로 이제 등장하는 생각 역시 쉽게 이해할 수 있는가 하는 데 있다. 어떻게 그 근본 명제들 자체를 근거지울 수 있는가? 힐버트의 답은 이렇다.

따라서 우리는 평민 방정식의 선형성과 운동을 표현하는 변형의 적교성, 선수 계산의 법칙들, 힐의 방정식변형, 라그랑주의 운동방정식, 방출과 콤과 비관한 키프로프의 법칙, 엔트로피 법칙, 그리고 방정식의 근의 존재에 관한 명제의 증명들을 얻었다.\(^{36}\)

그러나 힐버트는 곧 뒤 이어 그 증명들이 그것들 자체로 증명이 아니라는 점을 지적한다.

그러나 이 '증명들'의 비관적 격려는 그것들이 그것들 자체로는 증명이 될 수 없고 기본적으로 단지 문제를 어떤 끝은 명제들로 추적할 수 있게 해줄 뿐이므로, 그것은 또 이제 증명되어야 할 명제들인 대신 새로운 공리를 간주되어야 한다는 것을 보여 준다. 실제 기하학, 선수, 경력학, 역학, 복사 이론, 또는 엔트로피의

\(^{35}\) Hilbert(1919), 1107-1109에 근거함.
\(^{36}\) Hilbert(1918), 1109, [7].
이러한 헨버트의 설명을 위의 도식에 추가한다면 아래와 같이 될 것이다.

(6) 그 근본 명제들은 (임의하게 말하면 중명이 아닌 중명에 의해) 더 깊은 명제들로 소급시킨다.
(7) 그 깊은 명제들은 이제 새로운 공리들로 간주된다.
(8) 그 새로운 공리들은 앞서의 공리들의 계층보다 더 깊은 공리의 계층을 형성한다.38)

이제 마이어가 제공해준 폭넓은 조망에 비추어 방금 인용한 헨버트의 설명과 그것을 도식적 으로 정리한 바를 반성해 보도록 하자. 공리적 방법의 적용이 동시에 토대의 심화라고 하는 헨버트의 심화한 사상을 이해하는 데 있어서의 어려움은 몇 가지 혼동 가능성이 증점을 해버리는 것일 수 있다는 논의의 편의상 어떤 개별 (지식의) 분야에 공리적 방법을 적용하는 일과 동일한 공리적 방법을 이웃 분야로 확장하는 일은 나누어 생각할 수 있다고 가정하자. 우선 개별 분야에의 공리적 방법의 적용에 관한 헨버트의 사상을 이해하는 데 있어서 혼동의 여지가 있는 문제는 두 가지로 보인다. 첫째 문제는 <1> 로우어, 마이어, 스릴요너 등이 지적한, 공리 체계의 제시와 공리적 방법의 적용을 구별하지 못할 때 야기되는 혼동의 문제이다. 둘째 문제는 <2> 논의의 목적상 나눌 수 있다고 가정했음에도 불구하고 와의 인용문에 따르면 어느 틀림없이 개별 분야에 공리적 방법을 적용하고 토대를 심화하는 데 이웃 분야로의 확장이 기대되어 있다는 데서 나오는 혼동의 문제이다.

37) Hilbert(1918), 1109, [8].
38) Hilbert(1918), 1109에 근거함.
리적 방법을 이웃 분야로 확장하는 일에 관한 헬버트의 사상을 이해하는 데 있어서 혼동의 여지가 있는 문제는 <3> "공리적 방법을 이웃 분야로 확장하는 일"이 동일한 공리적 방법의 적용이라는 의미와 어떤 분야에 공리적 방법의 적용하는 개별적 사례에 있어서 이웃 분야가 동시에 개입할 수도 있다는 의미의 두 가지 다른 의미로 이해될 가능성이 있어서 야기되는 혼동의 문제이다.

문제 <1>은 최근 여러 학자들에 의해 제해 논의된 것으로 보이고, 그런 구별은 아름대로 유효하다고 생각된다. 공리화를 시도하기 위해서는 해당 지식 영역에 이미 충분한 정도의 지식이 축적되어 있어야 한다. 그렇지 않으면 해당 분야의 명제들 간의 의존 관계와 독립성 관계를 파지는 일이 별 의미가 없을 것이기 때문이다. 충분한 지식이 축적되고 유클리드적인 공리적 접근법에 의해 공리 체계의 세가 이루어진 단계는 그렇다면 아직 그 공리들 자체를 근거지우기 위해 새로운 공리들의 소급이 이루어져야 않은 단계이고, 다시 말해서 토의 실태가 이루어지지 않은 단계이며, 그것은 또 다시 말해서 헬버트의 공리적 방법이 적용되기 이전 단계이다. 따라서 Hilbert(1918)이 공리들의 독립성(또는 의존성) 문제와 일관성 문제를 길게 논의한 이후, 여러 학자들이 공리 체계의 제시와 공리적 방법의 구별을 강조한 이유는 양자 모두 헬버트의 공리적 방법의 적용에 의한 토의 실태의 중요성에서 찾을 수 있을 것이다.

공리적 방법의 적용이 토의 실태 작업이라는 데 초점을 맞출 경우 주목하는 한 가지 역사적 사실은 멜슨 등 헬버트 학파의 학자들이 화려적 방법(regressive method)을 상 당 기간 동안 지열하게 논의했다는 점이다.39) Hilbert(1918)의 내용에서도 그런 논의의 혼란을 이해지 않게 찾아낼 수 있다고 여겨진다. 예컨대, 엄밀하게

말하면 증명이 아닌 증명에 의해 장차 새로운 공리의 지위를 확득하게 되는 더 깊은 명제들을 찾아내는 방법이 바로 이 회귀적 방법일 것이기 때문이다. 분석과 종합의 방법은 밀리高空 그리스의 수학자 파우스에게까지 소급될 수 있고, 중세의 분해(resolutio)와 결합(compositio)의 방법으로 이어지며, 테카르트와 칸트에 의해서도 대단히 중요하게 다루어진 바 있으므로 이 주제에 대한 본격적인 논의는 명확히 본 논문의 범위를 넘어선다. 여기서는 힐버트의 공리적 방법의 맥락에서만도 “이 회귀적 방법은 무한히 계속될 수 있는가? 아니면 무한히 계속될 수밖에 없는가?” 등의 홍미로운 문제를 논의할 여치가 충분하게 남아 있다는 점을 지적하는 것으로만족하도록 하자.

한편 문제 <2>와 문제 <3>는 놀랍게도 그 중요성에 비해 별로 논의된 바 없는 것으로 여겨진다. 다만 유일한, 그리고 대단히 의미 있는 예외적 사례가 Stöltzner(2002)에서 발견된다는 점을 지적해 두어야 한다. 스페츠너는 Hilbert(1918)에 제시된 다양한 개별 과학 분야에서의 토대의 상호 사례들을 여덟 가지 유형으로 나누어 분석하였기 때문이다.40)

3.4. 제르멜로-러셀 역설의 영향

-chan하우스는 흥미롭게도 집합론의 역설들이 힐버트의 초기 공리적 프로그램에 중요한 철학적 변화를 야기했다고 주장한다. 그 증거로 그는 역설들이 지니는 논리적 연관성을 인식하지 못했던 이전과 달리 힐버트에게서 집합론이 그의 수학의 공리화 프로젝트에서 초점이 되었다는 점을 드는.41) 칸하우스는 또 힐버트가 집합론

에 대해서는 공리적 접근법을 취하지 않았다는 점을 지적한다. 그에게서 집합론은 그의 산수의 공리적 토대와 공동으로 작용하는 프로그램이었고, 그는 그의 공리학 (axiomatics)의 틀 내에서 집합론의 모든 말쟁 많은 개념들이 표현 불가능하거나 그것들의 존재가 증명될 수 있다고 주장했다는 것이다. 또 1900년 경 힐버트는 집합론을 하나의 독립된 수학의 세부분과가 아니라 산수에의 한 대안적인 방법론적 접근법으로 취급했었고, 그의 "실용적" 관점과 부합하게 모순들의 등장은 받아들여진 수학적 지식의 축적들이 다른 수단에 의해 보존될 수 있는 한 전의 경계할 바가 못 되었다고 펩하우스는 주장한다.
그러면 1905년에 이르면 힐버트는 집합론에 대한 태도를 이미 완전히 바꾸었다는 것이다. 집합론이라는 새로운 수학의 분야에서 미해결의 문제들이 제기되었고, 그것들은 모순을 야기했으며, 따라서 이 학문분야의 토대를 강화하고 방법에 관한 철저한 연구가 시작하게 요구되었다. 나아가서 펩하우스는 역설들이 힐버트의 프로그램의 밑인 산수의 공리들의 일관성 증명에 영향을 미쳤다는 점을 강조한다. 모순인 논리학을 수단으로 해서는 원하는 "직접적 증명"을 얻을 수 없기 때문이다. 그 결과 이전까지는 산수의 공리화를 논리적, 집합론적 연구의 독립적인 순수한 수학적인 문제로 간주했던 때 반해, 이제 힐버트는 논리학과 산수의 법칙들의 부분적으로 동시적인 전개를 요구하게 되었다.

고 집합론이나 논리학이 위함받는다는 열려는 전혀 보여주지 않았다.
Moore(2002), 47.

1900년 힐버트의 스물 세 가지 수학의 문제들 중 처음 두 문제 가 집합론과 관련된 문제였음에도 불구하고 1908년이 되어서야 그것들이 제르맹로의 공리적 집합론의 맥락에서 논의될 수 있게 되었다는 점을 지적하고 나서, 로우이는, “심지어 그때에도, 제르맹로의 공리들이 집합 형성에 대한 여하한 논리적 규칙들도 구체화하는 데 실패했기 때문에 그의 계획은 사소의 일관성을 확립해주는 직접적 증명이 가능하다는 핵심 문제를 담하는 데 있어서는 아무런 실제적인 손모가 없었다”는 홍미로운 논평을 가한다.46)

3.3.에서 우리는 Hilbert(1918)에 근거하여 공리적 방법의 다양한 학문 분야에 적용하는 데 관한 힐버트의 견해를 고찰하였다. 이에 그 논의를 범경으로 하여 집합론이라는 특수한 분야에 공리적 방법을 적용하는 데 관해 깊은 강연문에서 힐버트가 퍼력한 견해를 간토한 차례이다. 토대의 심화와 관련하여 공리들의 일관성을 논의하는 대목에서 힐버트는 일관성 문제가 엄격히 최고의 중요성을 자극하는 점을 우선 지적한다. 그리고 그는 어떤 이론 내의 모순의 존재는 전체 이론의 내용을 위협한다는 데서 그 이유를 찾는다. 그런데 힐버트는 홍미롭게도 물리학의 이론에서 야기되는 모순들은 언제나 공리들의 선택을 변경함으로써 제거되는 데 반해 순수 이론적 지식의 분야에서 모순이 등장하는 경우에는 사정이 다르다는 점을 지적한다.

집합론은 칸토르까지 소급되는 모든 집합들의 집합의 역설에서 그린 [모순의] 발생의 고전적인 사례를 포함하고 있다. 이 역설은

46) Rowe(2000), p. 82. 로우이는 그리고 바로 그 깔끔히 힐버트가 제르맹로를 강력히 지지했음에도 불구하고 전면에 나서지 않고 제르맹로의 선택 원리에 타당성에 대한 논쟁에서 아무런 적극적인 역할도 하지 않았다고 추측한다. 힐버트의 깔끔히 하나의 미스터리라는 점은 앞서 이미 지적한 바 있으므로, 로우이의 추측은 올고 그룹을 빠나서 반가운 만이 있다.
그리고 힐버트는 곧 이어 우리의 목적상 아주 흥미로운 주장을 펼쳤다.

그러나 이 위태로운 사태에서도 공리적 방법이 구조에 나서. 정확한 방식으로 집합들의 정의를 입의성과 그것들에 관한 진술의 허용가능성 양자 모두를 제한하는 적절한 공리들 을 세우면서 제르멜로는 그 모순들이 사라지며 집합론의 범위 와 작용가능성은 독립이 유지되게끔 하는 방식으로 집합론을 전개하는 데 성공했다. 43)

이 단락만을 읽을 경우 녹자의 힐버트가 1908년 제르멜로가 최초의 공리적 집합론의 체계를 제시한 이후 오랫동안 공식적으로 에에 대한 공식적 입장 표명을 하지 않고 침묵을 지키다가 마침내 천성과 저자의 뜻을 밝힌 것이라는 인상을 받기 쉬울 것이다. 그리고 그러한 인상은 전문가들의 인식도 일부하는 것처럼 보인다. 에런데, 에핑하우스는 최초의 제르멜로 전기에서 다음과 같이 기술하고 있다.

공리화 논문은 그의 체계론적 연구의 첫 시기 동안의 제르멜로의 집합론 작성의 폭가움이다. 위에서 논의한 것처럼, 그것은 힐버트의 체계론 프로그램의 정신에서 빠져 있다. 힐버트 자신이 그것의 승배자 가운데 속했다. 1920년 경의서 그는 이렇게 말한다.

최근 새로운 [집합론]을 건설했고, 제가 보기에, 가장 정확한 방식으로 독자에 그 이론의 정신에 적합하게 그렇게 한 언들이 바로 제르멜로였다. 44)
그리고 그는 그 공리화들

그것을 통해 수학 전체를 논리학으로 환원하는 오랜 문제가 강한
저극을 만든 공리적 방법을 완벽하게 정교화한 가장 눈부신 사례
로 특징지운다. 50)

그러나 필자는 이러한 해석은 옳지 않다고 생각한다. 우선 예병
하우스가 의존하고 있는 자료가 화학적 문서가 아니라 그의 노트
에 불과하다는 점에 문제가 있다. 최소한 Hilbert(1918)은 강연문이
학술지에 출판된 것이므로 강의노트에 우선해야 마땅하다. 그런데
Hilbert(1918)로부터 위에서 인용한 바의 전후 단락을 참조할 경우,
다시 말해서 백색을 고려하여 인용문을 다시 읽을 경우 우리는 전
혀 다른 인상을 받게 된다. 우선 인용문의 다음 단락을 보도록 하
자:

모든 앞선 사례들에서는 어떤 인용의 발전 도상에서 출현했든,
그리고 공리 체계의 제구성에 의해 제거될 필요가 있던 모습들
의 문제였다. 그러나 단일 우리가 가장 엄밀한 과학의 병행으로
서 수학의 명성을 회복하기를 원한다면, 존재하는 모습들을 단순
히 회피하는 것이 아닌 충분하고자 한다. 공리의 의미와 이론의 주된
요건은 더 밀려 나아가야, 즉 모든 시각의 분야에서 가능하고,
체계에 기초한 모습들이 절대적으로 불가능하다는 것을 보여 주
어야 한다. 51)

이 단락은 명백히 체르멜로가 1908년 논문에서 성취한 바로는
충분하지 않다고 주장하고 있다. 문제의 인용문에 앞서 물리학 이
론에서의 모순의 문제를 다룬 단락을 보도록 하자.

49) Hilbert(1920), 21-22.
51) Hilbert(1918), 1112. [33].
앞서 이미 말한 바로부터 알 수 있듯이, 물리학의 이론들에서 발생하는 모순들은 언제나 공리들의 선택을 변형함으로써 제거된다. 난점은 모든 판정된 물리 법칙들이 선택된 공리들의 논리적 귀결이 되도록 선택하는 데 있다.\(^{53}\)

힐버트는 즉시 여기서 체르멜로가 1908년 공리적 집합론을 통해 모순을 제거한 방식이 물리학에서 공리 선택에 변경을 가함으로써 모순을 제거하는 방식과 유사하다는 점을 시사하고 있는 것이 아닐까? 만일 그렇다면, 나아가서 헐버트는 여기서, 집합론을 모든 수학의 토대로 취급하는 입장을 취할 경우 물리학에서의 모순 제거 방식과 전혀 다른 모순 제거 방식을 취해야 한다는 점을 무시했다는 점에서 체르멜로는 공리적 방법의 적용에 대한 이해가 불충분겠다는 이유로 비판받아야 한다고 암시하고 있는 것은 아닐까?

뒤이은 단락들에서 헐버트는 소위 상대적 일관성의 증명 문제를 거론한 다음 이렇게 주장한다.

오직 두 가지 경우에만, 즉 그것이 정수들 자체의 공리들의 문제일 때와 집합론의 토대의 문제일 때에만, 다른 특별한 지식의 영역으로의 이 전환의 방법을 분명히 사용할 수 없다. 왜냐하면 여기서는 논리학 이외에는 소요할 수 있는 다른 어떤 학문 분야도 없기 때문이다.

그러나 일관성의 검토는 회피할 수 없는 과제이며므로 논리학 자세를 공리화하고 수론과 집합론이 단지 논리학의 일부일 뿐이라고 것은 증명하는 것이 필요한 것으로 보인다.\(^{53}\)

힐버트의 이러한 주장은 그의 관점에서 본 체르멜로의 1908년 논문의 성과가 지니는 한계를 재확인해 주고, 이는 위에서 거론한 바 Zermelo(1908)에 대한 Hilbert(1918)의 상당히 비판적인 논조와 일치한다. 흥미로운 점은 그와 아울러 헐버트가 역설의 해결을 위

\(^{53}\) Hilbert(1918), 1112, [30].
\(^{53}\) Hilbert(1918), 1113.
해 논리학의 공리화로 시선을 돌렸다는 사실이다. 무어는 이에 관해 이렇게 기술하고 있다.

이진술은 통상적인 해석과는 반대로 힐버트가 이 때에는 -- 그가 수학이 논리학으로 근원될 수 있다고 믿었다는 의미에서 -- 논리주의자였음을 보여준다.54)

그러나, 다시금 무어가 지적했듯, 힐버트가 논리주의자였던 기간은 그러 오래지 않았던 것으로 보인다. 힐버트는 1920년 여름학기에 행해진 강의에서

오늘날 집합론은 논리학으로 근원함(그리고 그에 따라 또한 관행적인 해석학의 방법들을 논리학으로 근원함) 목표는 성취 되지 못했고, 아마도 일반적으로 성취될 수 없음을 55)

이러 결론이었기 때문이다. 주목할 만한 일은 바로 이 강의에서 힐버트는 Hilbert (1918) 의 비판적 논조와는 달리 (위에서 이미 언급한 바 있듯) 체르멜로를 극구 찬양했다는 사실이다. 56) 한 마디로 힐버트는 체르멜로의 공리적 집합론과 러셀의 논리주의 사이에서 계속 동요했던 것으로 보인다. 다시 말해서, 체르멜로-러셀 역설이 지니는 의미에 대해 새롭게 인식한 이래 힐버트는 그것을 근원적으로 해결하는 문제에 무엇보다도 큰 중요성을 부여한 것으로 보인다.

55) Hilbert (1920), 33.
56) 위의 각주
4. 1908년경 공리적 방법에 관한 제르멜로의 입장

4.1. 집합론 공리화의 동기

앞에서 지적했듯이 제르멜로가 집합론을 공리화한 동기는 보통 집합론적 역설들에서 찾아가곤 했다. 57) 그러나 "그런 견해는 일말의 전리를 포함하고는 있으나 제르멜로와 그의 동시대 인물들 사이의 본질적 차이점을 무시하고 있다"는 것이 무어의 견해이다. 58) 무어가 제르멜로와의 비교 대상으로 취한 인물은 린델과 하우스도르프로, 전자가 역설의 해결책을 기져의 기호논리학으로서 유형이론에서 찾은 데 비해 후자는 정열 집합론의 토대를 수학 내에서 찾으려 했다고 한다. 그리고 제르멜로의 입장은 양자의 중간에 놓인다는 것이다.

린델과 달리, 1908년에 제르멜로는 (동식적인 오해와는 반대로) 역설들이 아니라 그의 1904년의 증명의 수용에 못이득하고 있었다. 그러나, 린델처럼, 그는 칸토르의 초한 이론이 도시의 사례 같은 가치이기를 필요로 한다는 점, 특히 칸토르의 집합론의 성과중심의 문제의 대상들의 임의의 종체로서의 점화의 정의는 지나치다고 본다는 것을 깨달았다. 하우스도르프와 제르멜로 양자 모두 집합론을 철학이나 논리학의 일부라고 보는 수학의 일부로 취급했다. (Zermelo(1908), 107, 110, 125) 그러나, 하우스도르프의 대조적 입장으로, 제르멜로는 집합론의 건전한 상태의 발견에 공리화가 본질적인 것으로 간주했다. 59)

무어는 나아가서 정열 정리의 새 증명을 제시한 Zermelo(1908b)와 공리적 집합론이 최초로 제시된 Zermelo(1908a)의 두

57) 앞의 각주 1 참조.
논문 모두에서 역설의 위험이 수학의 관점에서 볼 때 실제적인 것이 아니라 보다는 외관상의 것에 불과한 것으로 보았다는 점을 방중해 준다고 주장한다.6) 진짜 위험을 받고 있었던 것은 제르벨로의 정밀 정리의 증명이었고, 제르벨로는 이 증명을 확보하기 위해 이 중의 답변을 제시했다는 것이 무어의 해석이다.

“첫째, 그는 그의 비판자들에게 답변했고, 그의 첫 번째 증명에서와 마찬가지로 이전의 그의 선택 공리에 크게 의존하는 새 증명을 제시했다. 둘째, 그는 집합론의 열일한 공리 체계를 창조했고, 그의 증명을 그 안에 포함시켰다. 그는 증명 전체를 보존하기 위해서는 그런 체계가 그의 선택 공리를 포함해야 한다는 것을 알았다. 따라서 그의 공리화는 일차적으로 그의 정밀 정리 증명을 보존하려는 욕망, 그리고 특히 그의 선택 공리를 구하려는 욕망에 의해 동기를 부여받았다.”61)

제르벨로에 의한 집합론의 공리화의 동기를 러셀의 역설에서 찾는 다수설과 제르벨로 자신의 정밀 정리 증명을 정당화하려는 이론에서 찾는 소수설 양자 모두 일방의 전리를 포함하고 있을 것이 다. 동시에 양자 주요한 상호배타적이지 않은 것으로 보인다. 그렇다면 양자 중 어느 하나를 유일물리적 동기다리가 결정적으로 중요한 동기로 포착하려는 열망은 간직 하거나 우선 양자에 각각 적절한 위치를 부여하면서 좀 더 깊은 차원에서 힐베르트와 차별화되는 제르벨로의 집합론 공리화의 동기를 찾는 노력이 필요할 것이다. 다시 말해서 집합론의 공리화 계획은 힐베르트와 제르벨로에게 이와 긴밀적으로 존재했고, 러셀의 역설의 해소와 정밀 정리 증명은 모두 그 계획을 구현하는 데서 충족해야 할 요건들에 불과하다.

는 데서 출발해서 헬버트와 제르멜로가 각각 어떤 특유의 집합론의 공리화 작업의 기본 동기를 지녔었는가를 묻는 탐구로 나아가야 할 것이다.

단서들은 이미 제법 주어져 있다. 예를 들어, 프레게에게 보면 변경된 편자에서 헬바르트가 이미 지적했던 러셀의 역설은 제르멜로에 의해 이미 여러 해 전에 발견되었다고 62), 헬버트는 그것이 집합론에 국한된 것이 아닌 논리적 역설이라는 점을 인식하고 나서야 이를 심각하게 생각하게 되었으므로 63), 헬버트에게서 러셀의 역설이 지니는 의미는 집합론의 공리화 문제보다도 논리학과 수학의 경제 문제에 좀 더 비중을 두고서 찾아내야 할 것이다. 또한 정열 정리의 증명 문제는 1900년 파리 수학자대회에서 헬버트가 제기한 23개 문제들 중 첫 번째인 칸토르의 연속체 가설 문제의 일부이므로 64), 자신의 증명을 정당화하려는 제르멜로의 열망은 손쉽게 이미 존재했던 집합론의 공리화 구상을 구체화하는 과정 안에서 제 자리 찾아올 수 있을 것으로 보인다. 그러나 집합론을 공리화한다는 것은 과연 무엇을 의미하는가? 설사 헬버트와 제르멜로 양자 모두 집합론을 공리화하려 했다 하더라도, 그들은 "집합론의 공리화"로 전혀 다른 것을 의미했을 수도 있지 않은가? 앞서 우리는 공리 체계의 제시와 공리적 방법 자체에 대한 반성을 구별해 보기도 했고, 공리 체계의 제시와 토대의 심화라는 의미에서의 공리적 방법의 적용을 대조해 보기도 했다. 헬버트는 Hilbert(1918)에서 제르멜로의 공리적 집합론은 공리 체계를 제시하기만 했을 뿐이고, 공리적 방법 자체에 대한 반성이나 토대의 심화라는 의미에서의 공리적 방법의 적용은 결여되어 있다고 평가한 것인가?

64) Hilbert(1900a), pp. 1103-1104.
4.2. 세르델로의 환원론

집합론을 공리화하는 작업의 기본 동기에 관한 다수설과 소수설의 대립을 집합론을 공리화한다는 것이의 의미에 관한 헐버트와 세르델로의 전해 차이로 파악하는 것은 상당히 유명한 작업가설로 판단된다. 이제 그 차이를 학문의 왕국에서 또는 수학 내에서 집합론의 위상에 관한 전해 차이, 다시 말해서 수학의 한 분야로서의 집합론과 수학의 토대로서의 집합론의 차이로 이해해도 좋을지를 가능해 볼 차례이다. 우선 1908년 시점에서 이미 헐버트와 세르델로 사이에 상당한 전해 차이가 있었음을 지적한 예외적 사례인 테일러(R. G. Taylor)의 논의에서 단초를 구하기로 하자. 테일러의 지적했듯, 세르델로의 환원주의 적정과 헐버트의 모델론적 이해 방식 사이에는 조정하기 어려운 갈등적 요소가 있었던 것으로 보이기 때문이다.65)

테일러는 환원론이 다음의 세 주장으로 포괄하는 것으로 이해한다.

(R1) 모든 수학적 대상들은 집합들이다.
(R2) 모든 개념들은 원소들의 집합을 의미가능하다.
(R3) 모든 수학적 관리는 집합론적 관리이다.

또한 그는 이보다 절선 운건한 전해로 위의 세 주장은 물리치지만 그것들과 유사한 다음의 세 주장은 받아들이는 입장을 상정한다.

65) Taylor(1993), 543-545; Kanamori(2004), 499 이하는 세르델로의 환원론을 다음과 같이 논의하고 있다. "Zermelo pioneered the reduction of mathematical concepts and arguments to set-theoretic concepts and arguments from axioms, based on sets doing the work of mathematical objects. Zermelo(1908) wrote at the beginning: "... for me, every theorem stated about finite numbers is nothing other than a theorem about finite sets"; 세르델로의 환원론을 논의한 또 다른 사례로 Hallett(1984), p. 244 이하를 끝을 수 있다.
다.

(R1) 모든 수학적 대상들은 집합들로 이해될 수 있다.
(R2) 모든 수학적 개념들은 원소들의集合로 이해될 수 있다.
(R3) 모든 수학적 관리는 집합론적 집합으로 이해될 수 있다.

테일러는 젊은 바이로 범주론에서 (R1)-(R3)에 해당하는 명식적인 전술을 찾을 수 없지만, 젊은 교회론의 목표는 분명히 토클론적 프로그램이고 이 프로그램은 그 성격상 환원론적이라 주장한다. 그리고 젊은 교회론가 명식적으로 (R1)-(R3)를 주장하지 않은 까닭은 그가 칸도르와 데카르트가 (최소한) 유현수에 관하여 환원론을 증명한 것으로 간주했기 때문이라 본다. 66)

홍미롭게도 젊은 교회론가 빌버트의 방법론을 그당 추종한다고 보는 테일러의 논가는 매우 취약한 편이다. 그는 Zermelo(1908a)에서 젊은 교회론가 그의 공리들의 일관성을 증명하지 못한 점을 겪었고 완전성 문제 또한 거론했다는 것을 증거로 들 따름이기 때문이다.

그 반면 젊은 교회론가 빌버트의 전반 빌버트의 철학적 입장을 지もなく 을 입증하기 위해 테일러가 제시하는 논거들은 상대적으로 토론하고 정적을 틀어싼 면이 있는 것으로 여겨진다. 그것은 빌버트의 철학 입장으로 자신이 이해하는 바를 (초기 원형적) 모델이론적 관점이라 단언하고서 젊은 교회론의 입성이 거기에 부합될 수 없는 까닭을 설득력 있게 제시하기 때문이다. 빌버트에 따르면, 궁리 체계들은 모델들을 갖고, 이것은 또 그를 수학적 존재와 잔리에 관한 새로운 중요한 아이디어들로 이끌었다고 테일러는 주장한다. 다양한 모델들이 주어지만 그 모델들의 정의역과 독립적으로 존재하는 수학적 대상들을 운위하는 것이 더 이상 아무런 의미가 없기 때문이라는 것이다. 유사하게, 그 모델들과 독립적으로 참인 명제들음 운위하

는 것 역시 의미가 없게 된다. 그 반면 제르멜로에게서는 그 모델 들의 다양성이 아주 제한된다고 테일러는 지적한다. 제르멜로에 따르면 정의역은 오직 urelement에 관해서만 달라질 수 있기 때문이 다. 나아가서 테일러는 수학의 공리들이 적립적 자명성을 지니는 것이라고 보는 전통적 견해를 제르멜로가 유지하고자 했다는 점을 강조한다. 제르멜로는 전리 문제를 결코 흔히하지 않을 뿐만 아니라 수학적 자명한 전리들에 가까운 현실적 과학이라는 견해를 옹호하는 데 반해 헨리트의 입장에서는 그러한 견해들을 결코 수용할 수 없었을 것이라는 것이다.

그러나 테일러는 이러한 차이점을 철학적 입장의 차이로만 이해하고 방법론에 관한 한 양자 사이에 차이가 없느냐고 주장한 다. 페퍼는 이러한 철학적 입장의 차이는 공리 체계의 방법 자체에 실질한 함축을 지니는 가람에 방법론적 견해의 차이를 필연적으로 수반한다고 생각한다. 그리고 판점에서 철학적 견해는 그 방법론적 차이가 제르멜로가 실제로 체택했던 공리들과 그것들의 역할에서 분명히 드러난다는 점을 논변하는 것이다. 아울러 헨리트는 이러한 감응을 어떻게 이해하고 소화했던지를 동시에 조감하는 일도 의미가 있을 것이다.

혹자는 주어진 분야에서의 공리 선택의 문제와 공리적 방법 자체에 관한 성찰의 문제를 예리하게 분리함으로써 헨리트와 제르멜로의 철학적 견해에서의 차이가 방법론적 견해에서의 차이를 함축할 가능성 자체를 차단하여 할지도 모른다. 제르멜로의 원리론적 경향이 수학적 대상의 존재와 수학적 진리의 문제가 관련 광부한

67) Taylor(1993), 543.

68) Taylor(1993), 543.

69) 실제로 테일러는 논문 도처에서 방법론적 차이라고 하기에 충분한 것들이 헨리트와 제르멜로의 차이로 지적되고 있다. 예컨대 Taylor(1993), 557 참조, 이 점은 아래에서 다시 거론될 것이다.
합측을 기점으로써 공리 선택의 문제에 있어서 헬버트와 제르멜로에게 있어서 임종의 방법론적 차이를 야기한다고 하더라도, 그것은 공리적 방법 자체 인간의 학습자와 제르멜로의 견해가 근본적으로 일치한다는 데 하동의 장애가 되지 않는다고 말이다.

그러나 필자는 이러한 반론은 헬버트의 실제 수학적, 철학적 활동 자체를 왜곡하고 지역적에 이해를 직조하는 것이라 여긴다. 제3절에서 살펴 본대로 순수 수학과 자연과학의 여러 분야에 공리적 방법을 적용함에 있어서 헬버트는 해당 분야에 따라 상당한 유연성을 보여 주었고, 그것은 공리 선택의 문제나 공리적 방법에 관한 성찰 문제 중 어느 하나에 국한되지 않고 양자 모두에 영향을 미치는 인식론 내지 방법론적 문제의 영역 또한 헬버트의 핵심 관심사 중 하나였다는 점을 상기시켜 준다.

4.3. 공리의 선택 문제와 선택 공리

제르멜로의 인식론 내지 방법론적 견해를 탐색할 출발점이 될 만한 자료는 그가 1908년 여름학기에 독일 대학에서 최초로 행복한 수리논리학 강의노트에서 찾아 볼 수 있다.70) 왜냐하면 거기서 우리는 "산수의 명제들이 분석적이지 그냥이 않으면 종합적이지" 하는 문제에 대한 논의를 찾을 수 있기 때문이다. 기하학의 명제들이 이 직관에서 비롯하여 종합적 판단의 성격을 지닌다는 데는 거의 의견의 일치가 이루어진대 반해 산수의 경우에는 프레게, 러셀, 페아노 등 분석적 성격을 주장하는 이들과 포랑카레 등 종합적 성격을 주장하는 이들 사이의 논쟁이 계속되고 있었다. 예방하우스의 보고에 따르면, 제르멜로는 이 논쟁에서 어느 한 쪽을 선택하는 대신 산수 안에서 종합적 판단과 분석적 판단 양자가 모두 가능한 등장할 수

있다고 가정하고서 그 중 분석적 요소를 가리내는 것을 목표로 삼았다. 그리고 여기에서 사용된 방법은 우리가 위해서 논리적 해체적 방법이었던 것으로 보인다.\textsuperscript{71)

이제 그 다음으로 우리가 의미할 수 있는 자료는 Zermelo (1908a)의 서론이다. 왜냐하면 그것은 간략함에도 불구하고 몇 가지 의미심장한 단서를 제공해주기 때문이다. 첫째, 이 논문의 첫 문장은 집합론이 산수와 해석학 전제의 논리적 토대라는 점을 진정하고 있다.

집합론은 “수”, “배열”, 그리고 “함수”라는 근본적인 관념들을 그 것들의 조합하고 단순한 형태로 취급하여 수학적으로 연구하고 그에 따라 산수와 해석학의 논리적 토대를 개발하는 일에 그것의 과제인 수학의 분파이다. 따라서 그것은 수학의 필수적 기간의 구상요소를 이룬다.\textsuperscript{72)

두어가 잘 지적했듯이 심지어 1917년경에도 집합론을 수학 전제의 적절한 토대로 취급하지 않는 수학자들이 많이 있었다.

“그들 중 어떤 이들은 (예컨대 베르(René Baire)와 알리 브루어(L. E. J. Brouwer)와 알리 포랑카레가 그랬듯 토대로서의 집합론을 물리켰고 동시에 수리논리학도 물리였다. 어떤 이들은 수학의 적절한 토대로 수리논리학이기 때문에 토대로서의 집합론을 물리켰다. 여기서 가장 두드러진 대표자는 베피 란드 리델이었다. 그리고 다시, 그리고 아마도 당시의 대부분의 수학자들은 토대로 적절한 문제들을 전혀 관심을 보이지 않았다.”\textsuperscript{73)

또한, 이미 거론했듯이 허버트의 경우도 Hilbert(1905)에서는 논

\textsuperscript{72) Zermelo(1908a), p. 200.
\textsuperscript{73) Moore(2002), 52.
리학과 산수의 부분적으로 동시적인 개발을 주장했고, Hilbert (1918)에서도 산수와 집합론이라는 두 예외적인 경우 상대적 일관성 증명이 불가능한 상황에서 논리학 자체의 공리화를 제안하였다. 따라서 체르멜로가 1908년에 수학의 토대로서 집합론을 전명한 일은 대단히 예외적이고, 아담적이고, 논쟁의 여지가 많고, 선각자적인 인물이 돕는다는 사건이라 할 수 있다.

둘째로, 체르멜로는 우리의 사고를 필연적으로 지배하는 원리들로부터 도출되는 특정의 모습들 또는 “안티노미”들로 인해 집합론이 그 존재 자체를 위험받고 있지만 전적으로 만족스러운 해결책은 아직 발견되지 않았다는 점을 보고한다. 특히 그는 러셀의 안티노미로 인해 “오늘날 더 이상 어떤 논리적 관념에 그것의 의존으로서 집합 또는 부류를 의미하는 일에 혼란을 끼치지 않는 것으로 여겨진다”는 점을 지적하고, 칸토르의 집합의 정의가 다소의 재해를 요구한다고 쓰고 있다. 이 부분은 특별히 새로운 정보를 제공하는 것은 제르멜로 자신의 당시 상황 인식을 가능하게 해준다.

셋째로, 체르멜로는 그러한 상황 속에서 그에게 남은 유일한 방책을 이렇게 기술하고 있다.

"이러한 상황 아래에서 지금으로서는 반대 방향으로 나아가고 역사적으로 주어진 바대로의 집합론으로부터 출발하여 이 수학의 분야의 도기를 확립하는 데 요구되는 원리들을 찾는 길 화에는 아무것도 남겨져 있었다."

이 문장은 “반대 방향으로” 나아간다고 할 때 무엇의 반대 방향이라는 것인가, 그리고 “역사적으로 주어진 바대로의 집합론으로서 체르멜로가 가리키고자 했던 바가 무엇인가에 따라 전혀 다른 의미를 지니게 되므로 대단한 점책력을 지닌 것으로 보인다. 할猟은 체르멜로의 분리 공리를 칸토르가 1882년에 제시한 집합의 정
의론을 더 정확하게 만들기 위한 하나의 집합의 크기 제한 원리로
파악하는 관점에서 “역사적으로 주어진 바대로의 집합론”을 이해하
고자 한다. 그에 따르면, 데테킨트, 프레게, 그리고 린델 모두 논리
적 단순성을 선호한 결과로 보면 정의역을 사용하였지만,

그러나 이 모범 정의역의 사용이 분명히 분명하였을 때 ... (집합
론적 논리학이나 논리주의적 수학에 대조되는 것으로서) 수학적
집합론의 공리화를 산출하는 데 관심을 가진 이들은 원래의 제한
된 집합 인신으로 되돌아가 (그것을) 명확화하기를 원해 마땅하
다. 74)

는 것이다. 그리고 할레은 여기서 원래의 제한된 집합 개념을
Scott(1974)의 “이미 확정된 대상들을 수집(collection)하는 관념에
기초하는 집합에 대한 우리의 원래의 직관”과 동일시한다. 75)
그러나 이러한 해석은 특별한 논의 없이 “역사적으로 주어진 바대로의
집합론”을 “원래 제시된 대로의 집합론”으로, 그러니가 “간토로에
의해 원래 제시된 대로의 집합론”으로 이해한다는 데서 다소의 문
제점을 지니고 있다. 이러한 해석은 물론 “반대 방향으로 나아간
다”는 것의 의미를 “데테킨트, 프레게, 그리고 린델이 취한 방향과
반대 방향으로 나아간다”로 순식간에 이해할 수 있게 해주는 장점이
있다. 그렇지만, 데테킨트, 프레게, 린델의 집합론도 엿もらい 간토로
의 집합론 못지 않게 역사적으로 주어진 바대로의 집합론으로 대
접받을 권리가 지니고 있지 않을까? 필자는 그렇게 보는 둔이 “역
사적으로 주어진 바대로의 집합론”을 이해하는 길이 아닌가 여긴
다.

다시 말해서, 필자는 “역사적으로 주어진 바대로의 집합론”을 문
자 그대로 역사적으로 주어진 바대로의 집합론으로 이해하여 간토

르, 테데킨트, 프레게, 릴셀 등은 중심으로 당시까지 축적된 수학적 전통(또는 정리들)의 총체로 이해할 수 있고, 또 그래야 한다고 생각한다. 물론 그럴 경우 부담은 “반대 방향으로 나아간다”는 것이 의미를 찾아내야 한다는 데 있다. 그러나 이 문제도 생각과 달리 닫히 아미 추겠지 않으면 한가하다. 4.3의 두루(감정)에서 우리는 제르멜로의 인식론적, 방법론적 전통을 주장하기 위해 그의 강의노트를 출발점으로 삼은 바 있는데, 거기에 그는 “산수의 정제들은 분석적이기 떼리지만 수학적 정의가?”들 파지는 논쟁에서 어느 한 쪽을 선택하는 대신 산수 안에서 종합적 판단과 분석적 판단 양 자 모두가 등장할 수 있다고 가정하고서 그 중 분석적 요소를 가 리내는 것만을 목표로 삼았던 것을 보았다. 그리고 우리는 즉시 그 가 분석적 요소를 가리내는 작업에서 사용한 방법이 소위 “회귀적 (regressive) 방법”이었다고 평가했다. 그리고 이에 우리는 그 회 귀적 방법이야말로 주어진 수학적 정제들로부터 반대 방향으로 나 아가 그것들이 찾아가기 위해서는 반드시 필요 이상이 요구되는 근본 적 정제들을 찾아내는 방법이라는 데 생각이 미치게 된다. 그러나 까 필자의 제르멜로의 사유의 호흡을 다음과 같이 이해할 수 있다 고 주장하는 것이다: “우리의 사고를 필연적으로 지배하는 원리들 과 칸토의 집합의 정의로부터 출발하여 우리의 특정의 모순들 또는 안티노미들을 연역해냈다. 무언가 집합의 개념 자체에 제한을 가하려는 것은 알겠는데, 여겼거나 지금까지 우리는 그것을 대치할 집합의 정의를 찾아내지 못했다. 따라서 이 상황에서 우리가 할 수 있는 것은 반대 방향으로 나아가 역사적으로 주어진 바데로 의 집합론의 전략들로부터 출발하여 이 수학의 분야의 토대를 확립하는 데 요구되는 원리들을 찾는 길 외에는 아무것도 남지 않았다.”

넷째로, 제르멜로는 그의 논문에서 그가 의도하는 바가 “어떻게
칸토르와 테데킨트에 의해 창조된 전체 이론이 소수의 정의들과 상호 독립적으로 보이는 일곱 원리들, 또는 공리들로 환원할 수 있는지를 보여주는" 데 있다는 점을 명시하였다. 테데킨트를 이 대목에서 거론한 것은 간과할 수 없는 중요한 단서이다. 그러나 무엇보다도 여기서는 제르멜레노가 명시적으로 "환원"이라는 단어를 사용했는지에 대한 점이 중요할 것이다.

다섯째로, 제르멜레노는 그 논문에서 그가 논의하지 않은 바들을 열거하였다.

"이 원리들의 기원과 그것들이 타당한 범위에 관한 그 이상의 더 정확한 문제는 여기서 논의되지 않은 것이다."

"이 원리들의 기원"은 다소의 중요성을 지니는 것으로 보인다. 그것은 그 원리들이 의존하는 보다 더 근본적인 원리들을 의미할 수도 있고, 그 원리들을 어떻게 찾아냈는지를 불문으로서 관념의 기원을 의미할 수도 있었기 때문이다. 그 반면 "타당한 범위"에 관한 첨학적 문제란 손쉽게 논리학과 수학의 경계 문제를 의미하는 것으로 이해해서 큰 무리가 없을 것으로 보인다.

그 다음으로 우리는 제르멜레노가 1908년 셉동이 논문들에서 자신 의 공리적 집합론의 공리들에 관해 이야기한 바로부터 단서를 구할 수 있는지 확인해 보아야 한다. 주자하듯, Zermelo(1908a)는 일곱 개의 공리들로 이루어져 있다: (1) 외연성 공리, (2) 기초집합 공리 (공집합 공리), (3) 분리 공리, (4) 멱집합 공리, (5) 함집합 공리, (6) 선택 공리, (7) 무한 공리. 이것들은 각각이 논의할만한 충분한 가치를 지니고 있지만, 사가들은 보통 분리 공리, 선택 공리, 그리고 무한 공리에 집중하며, 그것은 충분히 정당화되지만한 이유를 지닌 것으로 여겨진다.76) 우선 분리 공리에 관하여 제르멜레노는 그것

76) 예컨대, 무한은 테데킨트의 경우 외연성 공리를 공리가 아니라 사실로서 받
이 (새로운 집합을 정의하는 데 상당한 정도의 자유를 줄음으로써) 어떤 의미에서 간호로가 일반적 집합의 정의의 대용품을 제공해 준다고 주장한다. 그리고 그것이 간호로가 정의와 다른 점을 그것에 두 가지 중대한 제한이 있다는 데서 찾는다. “집합들은 결코 이 공리에 의해 독립적으로 정의될 수 없고 항상 이미 주어진 집합들로부터 부분집합으로 분리되어야만 한다”는 첫째 제한은 “모든 집합들의 집합”이나 “모든 서수들의 집합” 같은 모순된 관념들을 제제준다. 한편 둘째 제한은 정의의 기준이 반드시 언제나 확정적 이어야 한다는 것으로, 리차드 안리노미를 해소해준다. 마지막으로 체르멜로는 일반적 집합론의 모든 본질적 정리들을 도출하기 위해 서는 지금까지 열거한 공리들로 충분하지만 무한 집합의 존재를 보장하기 위해 테라세트에 기인하는 무한 공리를 도입한다고 썼다.

Zermelo(1908a)는 선택 공리에 관해서는 공리적 방법에 관해 시사적인 특별한 논의를 담고 있지 않다. 그 반면 Zermelo(1908b)는 자신의 정열 정리 증명에 대해 제기된 비판들을 유형별로 나누어 논의하는 과정에서 선택 공리의 사용에 대해 쓰고있다 비판들을 답하는 대목에서 우리의 목적에 부합되는 정보를 제법 많이 제공해 준다. 특히 체르멜로는 수학 전체를 (아리스토텔레스-스콜라적 의미에서) “상단논법”으로 환원하려는 시도인 페아노의 Formulario (1897)조차도 상당수의 증명 불가능한 원리들에 의존한다는 점을 지적하고서 곧 이어 다음과 같이 향한다:

제르멜로와 공리적 방법

이 인용문에서 우리가 공리적 방법에 관한 제르멜로의 사상의 핵심을 찾아볼 수 있다는 것은 명백하다. 우선 선택 공리가 비판의 표적이 되고 있는 상황에서 그가 전혀 중요하지 않고 그것의 자명성에 대한 확신을 피력하고 있다는 점은 자못 주목할 만하다. 왜냐하면 공리의 자명성에 여전히 호소하고 있다는 점은 명백히 제르멜로가 상당히 중요한 점에서 빌헬름의 공리적 방법을 추종하지 않고 유클리드 이론의 전통적 견해를 유지했다는 증거가 되기 때문이다. 물론 그는 여기서 수학적 전리나 빌헬름이 자명하다고 한 것은 아니다. 그렇지만 ‘수학의 원리 (또는 공리)가 자명하다’고 할

77) Zermelo(1908b), 187-188.
때 그것이 그 원리(또는 공리)를 참인 명제로, (참이거나 거짓일 수 있는) 명제로 취급한 것이 아니라면, 그것은 도대체 무엇을 의미한 단 말인가? 수학의 원리(또는 공리)가 과학을 위해 필요한 것이라는 지적은 또 다른 측면에서 의미심장하다. 최근의 수학철학에서 최대의 생활 중 하나로 꼽히는 필수불가결성 논증과의 관련성 여러 부에 호기심이 생기기 때문이다. 직관적 자명성과 과학에서의 필요 성은 체르멜로가 공리의 필요조건으로 여긴 것인가, 충분조건으로 여긴 것인가, 필요충분조건으로 여긴 것인지는 불투명하다. 오히려 분명한 것은 그가 논쟁의 택락에서 논적에게 임종의 사람에 호소 하는(ad hominem) 논증을 피고 있다는 점이다. 이것이 비형식적 오류를 범하고 있는지, 그렇지 않으면 논쟁 상황에서 충분히 허용될 만한 것인지를 따지는 일은 필자의 관심사가 아니다. 이 문제를 지적하는 까닭은 오직 체르멜로와 그의 논적들 양자 모두 아직 유 클리드 이래의 공리적 접근법을 첫째로 선택 공리의 지위를 논하 고 있다는 점에 주의를 환기하고자 하는 데 있다. 아마도 당시 그 점에 대해 반발할 인물은 힐버트밖에 없었다고 해도 지나친 주장이 아닌 것이다. 그렇다면, 다시 말해 체르멜로는 힐버트의 공리적 방법의 정신에 따라 집합론을 공리화하면서 공리의 지위에 관해 힐버트가 삼려하고 반발할 것이 틀림없는 주장은 편 격이 된다.

4.4. 체르멜로의 공리적 집합론의 체계는 집합 개념의 임속적 정의일 수 있는가?

앞의 빐터의 경우에서도 보았듯, 또 혼히 그러하듯이, 체르멜로가 힐버트의 영향 아래서 힐버트의 공리적 방법을 체택하여 집합론을 공리화했다고 임속적으로 가정하고서 사유를 진행할 경우, 체르멜로가 Zermelo(1908a)에서 자신의 공리 체계를 통해 집합 개념을 임속적으로 정의한 것으로 이해하는 것은 지극히 당연하다고
하겠다. 그러나 비록 드물기는 하지만, 그러한 이해에 비판적인 시각을 보인 사례도 물론 전부한 것은 아니다. 예컨대, 테일러는 제르낼로의 의도를 헨버트의 의미의 모델이론적 것으로, 그에 따라 그의 일곱 공리들이 칸토르의 구조들의 특성 부류를 정의하는 것으로 해석하는 것은 대단히 유혹적이지만, 오류라고 주장한 바 있다.\(^{78}\) 또한 오래 전 포양카레는, 반일 제르낼로가 그의 공리들을 “집합”이라는 용어의 암묵적 정의로 고쳤다면, 그것들이 일반성을 증명할 필요가 있었다는 점을 지적했다. 그러나 포양카레에 따르면, 제르낼로는 그러지도 않았고, 또 그럴 수도 없었는데, 왜냐하면 그런 경우 그는 이전에 확립된 전리들에 의존해야만 했을 것이기 때문이다. 그러나 이것은 불가능한데, 왜냐하면, 제르낼로는 그의 공리들이 수학의 토대로서 전적으로 자립적이기 때문이었다.\(^{79}\)

이제 필자는 이러한 전례들에 바탕을 두고 제르낼로의 공리적 집합론의 체계는 집합 개념의 암묵적 정의의 수가 없음을 입증한 만한 논변을 구성해 보고자 한다.

논변 1 (포양카레 논변)

일관성 증명은 주어진 공리 체계가 어떤 원초적 개념의 암묵적 정의이기 위한 필요조건이다. 그런데 제르낼로는 Z의 일관성을 증명하지 못했다. 그러므로 Z의 공리들은 집합 개념의 암묵적 정의가 갖 된다.

필자는 이 논변이 결정적이라 믿는다. 그리고 그 점은 Hilbert(1918)에서 헨버트가 제르낼로의 공리적 집합론의 한계를 지적한 데서도 확인된다. 나아가서 제르낼로 자신이 Zermelo(1908a)

\(^{78}\) Taylor(1993), 544.

\(^{79}\) Poincare(1909a), 473; Moore(1982), p. 161에서 제안용.
에서 일관성 증명을 하지 못한데 대해 우감을 표명했다.
그렇다면, Z의 공리들이 집합 개념의 암묵적 정의가 되지 못함에도 불구하고, 왜 우리는 마치 그것들을 암묵적 정의처럼 취급하는가? 아마도 유일한 답은 그것들이 암묵적 정의로 의도되었다고 우리가 믿는다는 대서바에는 찾을 수 없을 것 같다.
백번 약보하여 어떤 공리들이 어떤 원초적 개념들을 동시에 암묵적으로 정의하도록 의도되었다고 우리가 믿는 데 추호의 의심도 없는 경우에 한해 그 공리 체계의 일관성이 증명되지 못했을 경우에도 그것들을 암묵적 정의로 간주하도록 하자. 그렇기 때문에 Z의 공리들은 집합의 암묵적 정의일 수 있다는가? 필자는 여기서 그것을 의심할 만한 이유가 오히려 충분하다고 믿는다. 위에서 보았듯이 Z의 공리들이 집합 개념을 규정하는 역할은 거의 대부분 분리 공리가 미달하고 있다. 그 것은 제로매로 자신이 언급한 바 있다. 따라서 다음과 같은 논변을 구성해본다고 하다.

논변 2

이런 공리체계의 공리들이 암묵적 정의로 간주된다면, 그것들이 원초적 개념들을 동시에 암묵적으로 정의하도록 의도되었다고 우리가 믿는 데 추호의 의심도 애채가 한다. 그런데 Z의 공리들이 암묵적 정의로 의도되었다고 믿기 어려운 점들이 다소 있다. 그러므로 Z의 공리들은 집합 개념의 암묵적 정의로 간주되지 못한다.

암묵적 정의도 못 되고, 암묵적 정의로 간주되지도 못한에도 불구하고, Z의 공리들은 여전히 집합 개념의 암묵적 정의일 가능성을 지니고 있는가? 필자는 그 점이 대단히 의심스럽다.
5. 결론: 세르멜로가 말하지 않은 것 또는 말할 수 없었던 것

집합론의 공리화 작업을 통해 드러난 공리적 방법에 관한 세르
멜로의 전해들을 심도 있게 이해하기 위해서는 물론 과학적으로
세르멜로의 집합론의 이해가 전체되어야 한다. 따라서 (1) 세르멜
로가 기본적으로 집합의 크기를 제한함으로써 역설을 피할 수 있
다는 러셀의 아이디어를 채용했다는 할프트와 그에 대한 테일러의
비판, (2) 또한 피델을 통해 널리 유포된, 현대 공리적 집합론이 세
르멜로의 반복적 집합론을 압도적으로 전제한다는 전제에 대한 논
의, (3) 나아가서 소위 스콜렘 역설이 아기한 스콜렘-세르멜로 논쟁
과 1차/2차 논리학의 문제 등이 본 논문이 다뤄야 했던 중요한 문
제라 여길 수도 있을 것이다. 그러나 여기서 이 문제들을 회피한
것은 용서받을 만한 충분한 이유가 있다고 믿는다. (1)의 경우 세
르멜로가 역설의 문제를 그다지 중요하게 여기지 않은 한, 그가 그
것을 피하기 위한 아이디어를 어떻게 얻었느냐 하는 문제는 부차
적인 데 지나지 않게 된다. (2)와 (3)의 경우는 본 논문이 초점을
 맞추고 있는 1908년 경의 세르멜로의 사상이나 1899년에서 1917
년에 이르는 시기의 세르멜로의 사상에 영향을 미칠 가능성이 자체
가 없으므로 다른 기회에 세르멜로의 후기 사상을 논의할 때 다뤄
야 마땅하리라 믿는다.

Zermelo(1908a)에서 세르멜로가 전혀 언급하지 않은 것 가운데
하나가 “힐버트의 공리적 방법”이다. 혹시 세르멜로는 집합론에 관
한 한은 최소한 헐버트의 공리적 방법을 적용할 수 있다는 점을
논문 자체를 통해 보여주고자 했던 것은 아닐까? 본 논문은 세르
멜로가 집합론 공리화함에 있어서 헐버트의 공리적 방법을 차용
하였다든 널리 무비판적으로 받아들여져 온 가정 자체를 검토하였
고 그 결과 후기 사상에서뿐만 아니라 심지어 전기 사상에 있어서도 제로벨로가 집합론 자체와 공리적 방법에 관하여 힐버트와 상당히 다른 견해를 지녔음을 가능성을 확인하였다. 그리고 이는 집합론의 역사와 공리적 방법의 역사, 그리고 나아가서 수학철학 전반에 걸쳐 상당한 함축을 지닌 수밖에 없었다고 본다. 장차 이 가능성을 보다 심층적으로 탐색하는 일은 동시에 바로 앞 문단에서 지적된 본 논문의 한계를 치유하는 길이 되리라고 필자는 믿는다.

Beth, E. (1959), *The Foundations of Mathematics*, Amsterdam:
North-Holland.

Hilbert, David (1920), Probleme der Mathematischen Logik, lecture notes by M. Schönfinkel and P. Bernays, summer session 1920, Mathematical Institute Göttingen.

Hilbert, David and Bernays, Paul (1934), *Grundlagen der Mathematik*, vol. 1, Berlin: Springer.

Hilbert, David and Bernays, Paul (1939), *Grundlagen der Mathematik*, vol. 2, Berlin: Springer.

Malament, D. B. (ed.) (2002), *Reading Natural Philosophy: Essays in the History and Philosophy of Science and*
Mathematics, Chicago: Open Court.

Peckhaus, V.(2002), “Regressive Analysis”. Logical Analysis and History of Philosophy, 5; also available at

Prawitz, D. and D. Westerstahl(eds.)(1994), Logic and Philosophy of Science in Uppsala.

Zermelo, Ernst(1908c), Mathematische Logik. Vorlesungen gehalten von Prof. Dr. E. Zermelo zu Göttingen im S.S. 1908, lecture notes by K. Grelling; UAF, C 129/224(Part I) and C 129/215(Part II).

Zermelo, Ernst(1930), "Ueber Grenzzahlen und Mengenbereiche: Neue Untersuchungen ueber die Mengenlehre",
Fundamenta mathematicae, vol. 16, pp. 29-47.

카이스트, 인문사회과학부
Email: woosukpark@kaist.ac.kr
ARTICLE ABSTRACTS

Zermelo and the Axiomatic Method

Woosuk Park

This article intends to examine the widespread assumption, which has been uncritically accepted, that Zermelo simply adopted Hilbert's axiomatic method in his axiomatization of set theory. What is essential in that shared axiomatic method? And, exactly when was it established? By philosophical reflection on these questions, we are to uncover how Zermelo's thought and Hilbert's thought on the axiomatic method were developed interacting each other. As a consequence, we will note the possibility that Zermelo, in his early as well as late thought, had views about the axiomatic method entirely different from that of Hilbert. Such a result must have far-reaching implications to the history of set theory and the axiomatic method, thereby to the philosophy of mathematics in general.

[Key Words] axiomatic method, Zermelo, Hilbert, deepening the foundations, implicit definition, the concept of set