Algebraic completeness results for sKD and its Extensions*

EUNSU K YANG

This paper investigates algebraic semantics for sKD and its extensions sKD\(_\Delta\), sKD\(\forall\), and sKD\(\forall\Delta\): sKD is a variant of the infinite-valued Kleene-Dienes logic KD; sKD\(_\Delta\) is the sKD with the Baaz's projection \(\Delta\); and sKD\(\forall\) and sKD\(\forall\Delta\) are the first order extensions of sKD and sKD\(_\Delta\), respectively. I first provide algebraic completeness for each of sKD and sKD\(_\Delta\). Next I show that each sKD\(\forall\) and sKD\(\forall\Delta\) is algebraically complete.

[주요어] sKD, sKD\(_\Delta\), sKD\(\forall\), sKD\(\forall\Delta\), algebraic semantics

* This work was supported by the Korea Research Foundation Grant KRF-2004-042-A00025. I must thank the anonymous referees for their helpful comments.
1. Introduction

Rescher [6] first considered the logic KD\(^1\) as an infinite-valued extension of the Kleene's three-valued logic [5] and its many-valued extension of Dienes [1]. But it gives a difficulty in showing semantic completeness of KD because it does have no tautologies in case it has the sole designated value the greatest, and in case it has as designated all the elements except for the least element, it may have the same tautologies as the classical propositional logic (CPL) by taking axioms and rules for CPL as those for KD.

Yang [7], [8] has recently investigated several logics with weak Boolean (wB) negation —. It is of interest that he [8] suggested in place of KD a variant of KD (sKD), and extended this to the sKD with — (wB-sKD) and the wB-sKD with quantifiers (wB-sKD\(\forall\)). He gave algebraic soundness and completeness for each of them. In it he also suggested other extensions of sKD such as sKD\(\Delta\) (the sKD with the [so called] Baa\'z's projection \(\Delta\)) and sKD\(\forall_\Delta\) (the sKD\(\Delta\) with quantifiers), together with the remark that each of sKD\(\Delta\) and sKD\(\forall_\Delta\) is algebraically complete. He, however, did not give any exact proofs of them.

1) By \(S^3_x\), Rescher expressed this logic. But we call it KD in honor of Kleene and Dienes who first gave the idea of it as many-valued logic.
This paper verifies that his statement is correct. To do this, we shall first show that each sKD and sKD$_\Delta$ is algebraically complete. Next we shall provide algebraic completeness for the first order extensions of sKD and sKD$_\Delta$ sKD$_\forall$ and sKD$_\forall_\Delta$, respectively. (Note that Yang [9] also gave algebraic completeness for sKD. But in this paper we provide its completeness in a little different style from [9].)

For convenience, by sKD$_{(\Delta)}$, we shall ambiguously express sKD and sKD$_\Delta$ together, if we do not need distinguish them, but context should determine which system is intended; and by sKD$_{\forall(\Delta)}$, sKD$_\forall$ and sKD$_\forall_\Delta$ together. Also we shall adopt the notation and terminology similar to those in [2], [3], [4], and assume familiarity with them.

2. Axiom Schemes and Rules for sKD$_{(\Delta)}$

For convenience, we present the axiomatic systems for sKD$_{(\Delta)}$ using the following axiom schemes and rules of inference. We shall use the biconditional \leftrightarrow, where $A \leftrightarrow B = (A \to B) \land (B \to A)$, and the falsity f. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

AXIOM SCHEMES
A1. $A \to A$ (self-implication)
A2. \((A \to B) \to ((C \to A) \to (C \to B)) \) (prefixing)
A3. \((A \to (B \to C)) \to (B \to (A \to C)) \) (permutation)
A4. \(A \to (B \to A) \) (positive paradox)
A5. \((A \land B) \to A, (A \land B) \to B \) (\(\land \)-elimination)
A6. \(((A \to B) \land (A \to C)) \to (A \to (B \land C)) \) (\(\land \)-introduction)
A7. \(A \to (A \lor B), B \to (A \lor B) \) (\(\lor \)-introduction)
A8. \(((A \to C) \land (B \to C)) \to ((A \lor B) \to C) \) (\(\lor \)-elimination)
A9. \((A \land (B \lor C)) \to ((A \land B) \lor (A \land C)) \) (distributive law)
A10. \((A \to B) \lor (B \to A) \) (chain)
A11. \(\neg \neg A \to A \) (double negation)
A12. \((A \to B) \to (\neg B \to \neg A) \) (contraposition)
A13. \((\neg A \lor B) \to (A \to B) \)
A14. \((A \to B) \lor ((A \to B) \to (\neg A \lor B)) \)
A15. \((A \to (A \to \neg A)) \to (A \to \neg A) \) (special contraction)
A16. \(\Delta A \lor \neg \Delta A \)
A17. \(\Delta (A \lor B) \to (\Delta A \lor \Delta B) \)
A18. \(\Delta A \to A \)
A19. \(\Delta A \to \Delta \Delta A \)
A20. \(\Delta (A \to B) \to (\Delta A \to \Delta B) \)

RULES
A \to B, A \vdash B \ (modus ponens (MP))
A, B \vdash A \land B \ (adjunction (AD))
From \(\vdash A \) derive \(\vdash \Delta A \) (necessitation (N))

DEFINITIONS
df1. \(A \lor B := ((A \to B) \to B) \land ((B \to A) \to A) \)
df2. \(\neg A := A \to \bot \)
df3. \(A \& B := \neg (A \to \neg B) \).

SYSTEMS
sKD: A1 to A15; MP, AD; df1 to df3.
sKD\&: sKD + A16 to A20, N.

Note that by df1 and df2 we may concern ourselves with
\(\rightarrow, \wedge, \text{and } f \) as propositional connectives for sKD, and \(\rightarrow, \wedge, f, \text{and } \Delta \) for sKD\(_\Delta\). By df\(3\), we can obtain

\[
(R) \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \& B) \rightarrow C) \quad \text{(residuation)}
\]
as a theorem of sKD\(_{\Delta}\).\(^2\)

Note that in sKD\(_\Delta\) \(\Delta \) can not be defined by \(\neg \) and \(\sim \) as in SBL (the strict basic (fuzzy) logic) of [3]. Note also that in sKD \(\wedge \) can not be defined as \(A \wedge B := A \& (A \rightarrow B) \) and thus the axiom \((A \& (A \rightarrow B)) \rightarrow (B \& (B \rightarrow A)) \) of BL (the basic logic for residuated fuzzy logics) in [3], [4] is not valid in it. However, we can obtain in place of it \((A \wedge B) \rightarrow (B \wedge A) \) as a theorem of sKD.

We note that "\(\neg \)" "\(\wedge \)" "\(\vee \)" and "\(\Delta \)" are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

Note also that with respect to any \(\Delta \) formula \(A \) of the form \(\Delta B \), the customary definitions of connectives, e.g., \(A \rightarrow B = \neg A \vee B \), etc., in CPL can be applied to sKD\(_\Delta\) since such formulas have Boolean properties (see T5 in section 4).

\(^2\) We can easily prove this. We show left to right as an example: let \(A \rightarrow (B \rightarrow C) \). Then by A12, transitivity, and MP, \(A \rightarrow (\neg C \rightarrow \neg B) \). Thus by A3 and MP, \(\neg C \rightarrow (A \rightarrow \neg B) \), and so by A12, transitivity, and MP, \(\neg (A \rightarrow \neg B) \rightarrow C \). Hence by df\(3\) \((A \& B) \rightarrow C \).
3. skd* and skd$^*_\Delta$ algebras

To prove algebraic completeness for skD$_{(\Delta)}$, we must define an algebra, more exactly a matrix, that will characterize skD$_{(\Delta)}$. Following [8], we shall call it a strong Kleene–Diene$^*_{(\Delta)}$ (skd$^*_{(\Delta)}$) algebra, more exactly, an skd* algebra for skD and an skd$^*_\Delta$ algebra for skD$_\Delta$, respectively.

Note that, for convenience, by an skd$^*_{(\Delta)}$ (algebra), we shall ambiguously express an skd* and an skd$^*_\Delta$ (algebra) together.

First, we define an skd* algebra whose class will characterize skD. An skd* algebra is a structure $A = (A, T, \bot, \sim, \wedge, \vee, \to)$ such that

1. $(A, T, \bot, \sim, \wedge, \vee)$ is a bounded de Morgan (b-DM) lattice, i.e., (A, \wedge, \vee) is a distributive lattice with the greatest element T and the least \bot, and \sim is a unary operation on A which is an involution.
2. Let $a \leftrightarrow b := (a \to b) \wedge (b \to a)$. The following conditions hold for all a, b, c: (with respect to lattice ordering \leq)

(i) $(a \to b) \vee (b \to a) = T$
(ii) $(a \to b) \vee ((a \to b) \vee (\sim a \vee b)) = T$
(iii) $(a \to b) \leq ((a \to b) \leftrightarrow T)$
(iv) $((a \to b) \to (\sim a \vee b)) \leq ((a \to b) \leftrightarrow (\sim a \vee b))$
(v) $(a \to (a \to \sim a)) \leq (a \to \sim a)$
(vi) $b \leq a \to c$ iff $a \ast b \leq c$, where $(df4) a \ast b := \sim (a \to \sim b)$.

Note that df4 corresponds to df3. Note also that an skd* algebra has as additional definitions algebraic counterparts
corresponding to df1 and df2 (see below).

We shall call the implication satisfying (1) to (5) strong Kleene–Diene (skd) implication and its corresponding algebra, i.e., an algebra satisfying (i) and (1) to (5) in (ii), an skd algebra; call the implication satisfying (1) to (6) skd* implication. Thus, an skd* algebra can be regarded as an skd algebra with a residuation. Hence, an skd* algebra may be called (or regarded as) a residuated skd algebra.

We next define an skd* algebra whose class will characterize sKDΔ. An skd* algebra is a structure \((A, \top, \bot, \neg, \land, \lor, \rightarrow, \Delta) \) such that (i) \((A, \top, \bot, \neg, \land, \lor, \rightarrow) \) is an skd* algebra and (ii) \((A, \top, \bot, \neg, \lor, \Delta) \) satisfies the following conditions:

\[
\begin{align*}
(\Delta 1) \quad & \Delta a \lor \neg \Delta a = \top; \\
(\Delta 2) \quad & \Delta (a \lor b) \leq (\Delta a \lor \Delta b); \\
(\Delta 3) \quad & \Delta a \leq a; \\
(\Delta 4) \quad & \Delta a \leq \Delta \Delta a; \\
(\Delta 5) \quad & \Delta a * \Delta (a \rightarrow b) \leq \Delta b, \text{ where } a * b := \neg (a \rightarrow \neg b); \text{ and} \\
(\Delta 6) \quad & \Delta \top = \top.
\end{align*}
\]

We call an algebra satisfying (ii) a \(\Delta \) algebra. Thus, an skd* algebra may be regarded as an skd* algebra plus a \(\Delta \) algebra.

An skd*(\(\Delta \)) algebra is linearly ordered if the ordering of its algebra is linear, i.e., \(a \leq b \) or \(b \leq a \) (equivalently, \(a \land b = a \) or \(a \land b = b \)) for each pair \(a, b \).

We note that in an skd* (\(\Delta \)) algebra \(* \) is a left-continuous \(t \)-norm (but not a continuous one) and \(\rightarrow \) is its residual.
(see Definition 2.1.1 in [4]), and \sim is the precomplement in the sense that \sim can be defined as $\sim a := a \rightarrow \bot$ (see [4]).

$(A, \top, \bot, *, \lor, \rightarrow)$ is a residiuated lattice in the sense that it satisfies the definition of a residiuated lattice (see Definition 2.3.2 in [4]).

Since \top is the dual of \bot, i.e., $\top = \sim \bot$, join \lor can be defined by using \rightarrow and meet \land (see df1), and \sim by \rightarrow and \bot (see df2), an $skd^\ast_{(\Delta)}$ algebra $(A, \top, \bot, \sim, \land, \lor, \rightarrow, (\triangle))$ may be abbreviated to $(A, \bot, \land, \rightarrow, (\Delta))$.

Examples of $skd^\ast_{(\Delta)}$ algebras are:

1) The algebras $([0, 1], \max, \min, *, \rightarrow, \sim, (\Delta), 0, 1)$ of rationals/reals between the unit interval 0 and 1, with a (left-continuous) t-norm \ast, its corresponding residuated implication \rightarrow satisfying T4 below, and with an involutive negation function $\sim : [0, 1] \rightarrow [0, 1]$ (see T1 to T4 below with respect to skd^\ast algebras), and with any necessitation function Δ satisfying T5 below with respect to $skd^\ast_{(\Delta)}$ algebras.

2) The quotient algebra $sKD_{(\Delta)}/\equiv$ of provably equivalent formulas (see Proposition 5 below).

4. Algebraic completeness for $sKD_{(\Delta)}$

For any left-continuous t-norm \ast, we can define a propositional calculus $skd^\ast_{(\Delta)}$, in an analogy to the way that Hájek [7] does for continuous t-norms, i.e., taking \ast and its residuum \rightarrow as the truth functions for the (strong) conjunction $\&$ and the implication \rightarrow, respectively.

The language of $skd^\ast_{(\Delta)}$ is defined as usual from a
countable set of propositional variables \(p_0, p_1, \ldots \), three(four) connectives \&, \(\rightarrow \), \(\land \), \((\Delta,) \) and the truth constant \(f \). Further connectives can be defined as in section 2. An evaluation for \(sKD(\Delta) \) is a function \(v : PV \rightarrow [0, 1] \) that is extended to all well-formed formulas of \(L(\neg, \rightarrow, \land, \lor, (\Delta,)) p_0, p_1, \ldots) \) by the following tables, T1 to T4 for \(sKD \) and T1 to T5 for \(sKD(\Delta) \); (PV: set of propositional variables, \([0, 1] \): the unit interval)

TABLES

T1. \(v(\neg A) = 1 - v(A) \),
T2. \(v(A \land B) = \min (v(A), v(B)) \),
T3. \(v(A \lor B) = \max (v(A), v(B)) \),
T4. \(v(A \rightarrow B) = 1 \) if \(v(A) \leq v(B) \)
 \(\max (v(\neg A), v(B)) \) otherwise,
T5. \(v(\Delta A) = 1 \) if \(v(A) = 1 \)
 0 otherwise.

Note that in fact T1 and T3 are redundant because the former can be defined by T4 and \(v(f) = 0 \) and the latter by both T2 and T4 (see df1 and df2). We define a formula \(A \) to be an 1-tautology of \(sKD(\Delta) \), briefly an \(sKD(\Delta)\text{-tautology} \), if \(v(A) = 1 \), i.e., \(\top \), for each \(sKD(\Delta)\text{-evaluation} \(v \).

We next define several notions. A theory over \(sKD(\Delta) \) is a set \(T \) of formulas. A proof in a sequence of formulas whose each member is either an axiom of \(sKD(\Delta) \) or a member of \(T \) or follows from some preceding members of the sequence using the rules above. \(T \vdash A \), more exactly \(T \vdash_{sKD(\Delta)} A \), means that \(A \) is provable in \(T \), i.e., there is an \(sKD(\Delta)\text{-proof} \) of \(A \) in \(T \). The deduction theorem for
sKD\(_{(\Delta)}\) is as follows:

Proposition 1 let T be a theory and let A, B be formulas.

(i) T \cup \{A\} \vdash_{sKD} B if and only if (iff) T \vdash_{sKD} A^2 \rightarrow B
where A^2 is A & A, 2 factors.

(ii) T \cup \{A\} \vdash_{sKD\Delta} B iff T \vdash_{sKD\Delta} \Delta A \rightarrow B.

Proof For (i), Corollary 2 in [9].
For (ii), see Theorem 4 in [3]. □

Note that (R) ensures that A^n may be also regarded as A → (A → · · · (A →, n copies of A, and thus T \vdash_{sKD} A^n → B as T \vdash_{sKD} A → (A → · · · (A → B)) · · ·). A theory is inconsistent if T \vdash f; otherwise it is consistent.

Let A be an skd\(_{(\Delta)}\) algebra. In an analogy to the above, we define an A-evaluation of propositional variables to be any mapping v assigning to each propositional variable p an element v(p) of A. In the obvious way, this extends to an evaluations of all formulas using the operations on A as truth functions, i.e., v(f) = 0, i.e., ⊥, v(A \land B) = v(A) \land v(B), v(A \rightarrow B) = v(A) \rightarrow v(B), (and v(\Delta A) = \Delta v(A)).
(Thus, v(¬A) = v(A) \rightarrow \perp, v(t) = 1, i.e., T, v(A \lor B) = v(A) \lor v(B), and v(A \land B) = v(A) \ast v(B).) We define a formula A to be an A-tautology if v(A) = 1 (or T) for each A-evaluation v. Then, we can easily show that
Proposition 2 (Soundness) The logic sKD$\langle\Delta\rangle$ is sound with respect to sKD$\langle\Delta\rangle$-tautologies; if A is provable in sKD$\langle\Delta\rangle$, then A is an A-tautology for each skd$^\ast\langle\Delta\rangle$ algebra A.

We note that in each skd$^\ast\langle\Delta\rangle$ algebra the equations (9) to (13), the (equational) conditions for adjointness (6), of Lemma 2.3.10 in [4] hold. Note also that each condition (1) to (5) for skd implication has a form of equation or can be defined in equation. Thus, since the class of (bounded) de Morgan lattices is a variety, (and each condition $\Delta 1$ to $\Delta 6$ also has a form of equation or can be defined in equation,) the class of all skd$^\ast\langle\Delta\rangle$ algebras is a variety.

Proposition 3 The class of all skd$^\ast\langle\Delta\rangle$ algebras is a variety of algebras.

Next, we show that classes of provably equivalent formulas form an skd$^\ast\langle\Delta\rangle$ algebra. Let T be a fixed theory over sKD$\langle\Delta\rangle$. For each formula A, let $[A]_T$ be the set of all formulas B such that $T \vdash A \leftrightarrow B$ (formulas T-provably equivalent to A). A_T is the set of all the classes $[A]_T$. We define that $[A]_T \rightarrow [B]_T = [A \rightarrow B]_T$, $\neg[A]_T = [\neg A]_T$, i.e., $[A]_T \rightarrow [f]_T = [A \rightarrow f]_T$, $[A]_T \land [B]_T = [A \land B]_T$, $[A]_T \lor [B]_T = [A \lor B]_T$, $[A]_T \ast [B]_T = [A \& B]_T$, $\Delta[A]_T = [\Delta A]_T$ (w.r.t sKD$_\Delta$), \perp (or 0) = $[f]_T$, and \top (or 1) = $[t]_T$.

3) It can be ensured that this definition is correct due to the provabilities as follows (we just need to check that \leftrightarrow is a congruence with respect to \land, \rightarrow, $(\operatorname{and} \Delta)$: we check just one.
By A_T, we denote this algebra.

Note that to define A_T algebra we need just the definitions of \rightarrow, \land, \bot, (and \triangle) because we can define other operations and special element by using these.

Proposition 4 A_T is an skd$^\ast_{(\triangle)}$ algebra.

Proof We first note that the lattice ordering \leq satisfies the following (see the proof of Lemma 2.3.12 [4]):

$$[A]_T \leq [B]_T \text{ iff } T \vdash A \rightarrow B.$$

The axiom schemes A5 to A9, A11, and A12 ensure that \land, \lor, and \neg satisfy de Morgan lattice properties, i.e., (i) in section 3. A10, A14, A15, and (R) together with the theorems (7) $(A \rightarrow B) \rightarrow ((A \rightarrow B) \leftrightarrow t)$, (8) $((A \rightarrow B) \rightarrow (\neg A \lor B)) \rightarrow ((A \rightarrow B) \leftrightarrow (\neg A \lor B))$ ensure that $*$ and \rightarrow together with \lor, \land, and \neg satisfy (ii) in section 3. That is, A10, A14, A15, (R), (7), and (8) ensure that (1), (2), (5), (6), (3), and (4), respectively, can be satisfied by these operations. Thus A_T (of sKD) is an skd* algebra. Moreover, with respect to sKD\land, the axiom schemes A16 to A20 together with A4, N, and MP ensure that \triangle is a \triangle

direction. Let $\vdash A \rightarrow B$. With respect to \land, by A5 and transitivity, $(A \land C) \rightarrow B$, and thus $(A \land C) \rightarrow (B \land C)$ by A5, A6, AD, and MP: with respect to \rightarrow, by transitivity, it is almost immediate that $(B \rightarrow C) \rightarrow (A \rightarrow C)$ and $(C \rightarrow A) \rightarrow (C \rightarrow B)$; with respect to \triangle, by N, $\vdash \triangle(A \rightarrow B)$, and thus $\vdash \triangle A \rightarrow \triangle B$ by A20 and MP.
algebra, i.e., each A16 to A20 satisfies $\Delta 1$ to $\Delta 5$, respectively, and A18, A4, N, and MP ensure that $\Delta 6$ can be satisfied. Thus, A_T (of sKD$_\Delta$) is an skd$^*_\Delta$ algebra.

Now we show how filters on residuated lattices determine homomorphisms and characterize homomorphisms to linearly ordered algebras. Let A be a residuated lattice. A filter on A is a non-empty set $F \subseteq A$ such that for each $x, y \in A$,

(F1) $x \in F$ and $y \in F$ imply $x \land y \in F$,
(F2) $x \in F$ and $x \leq y$ (or $x \rightarrow y \in F$) imply $y \in F$,
(F3) $x \in F$ implies $\Delta x \in F$.

F is a prime filter iff it is a filter and for each $x, y \in A$,

(PF) $(x \rightarrow y) \in F$ or $(y \rightarrow x) \in F$.

We note that this definition is just for a filter of skd$^*_\Delta$ algebras. With respect to skd* algebras, we need only (F1) and (F2) as the definition of a filter because an skd* algebra does not have Δ. Note also that with respect to a filter of skd$^*_\{\Delta\}$ algebras (PF) implies the usual definition of a prime filter (and vice versa) as follows:

Lemma 1 A filter F (of an skd$^*_\{\Delta\}$ algebra) is prime iff (PF') for each pair of elements x, y such that $x \lor y \in F$, $x \in F$ or $y \in F$.

Proof Left to right. Let F be prime and $x \lor y \in F$. By primeness, either $x \to y \in F$ or $y \to x \in F$. Let $x \to y \in F$. Then, A1 and A8 ensure that $(x \lor y) \to y \in F$. Thus, $y \in F$. Let $y \to x \in F$. Similarly, $x \in F$.

Right to left. A10 ensures that $(x \to y) \lor (y \to x) \in F$. Then, by primeness $(x \to y) \in F$ or $(y \to x) \in F$, as desired. □

Proposition 5 Let A be an skd$^*(\Delta)$ algebra and let F be a filter. Put $x \equiv_F y$ iff $(x \to y) \in F$ and $(y \to x) \in F$. Then,

(i) \equiv_F is a congruence relation over an skd$^*(\Delta)$ algebra.
(ii) The quotient of algebra A/\equiv_F is an skd$^*(\Delta)$ algebra.
(iii) A/\equiv_F is linearly ordered iff F is a prime filter.
(iv) Linearly ordered skd$^*\Delta$ algebras A are simple, i.e., the only filters of a linearly ordered skd$^*\Delta$ algebra A are $\{1\}$ and A itself.

Proof For (i), we first observe that \equiv_F is transitive to show that \equiv_F is an equivalence: it follows from the fact that the formula $(A \to B) \to ((B \to C) \to (A \to C))$ is an 1-tautology over A, and thus $(a \to b) \leq ((b \to c) \to (a \to c))$; let $(a \to b), (b \to c) \in F$. If $(a \to b) \in F$, then $((b \to c) \to (a \to c)) \in F$. Hence, since $(b \to c) \in F$, $(a \to c) \in F$. Thus, we may define equivalence classes $[x]_F = \{y : x \equiv_F y\}$. We next verify that \equiv_F is a congruence, i.e., preserves operations. Analogously to the proof of the statement that $[A]_T \leq [B]_T$ iff $T \vdash A \to B$ in Proposition 4, we can show that $[x]_F \leq [y]_F$ iff $x \to y \in F$: as an
example we prove right to left. Let \(x \rightarrow y \in F \). Then, since \(x \rightarrow x \in F \), A6 ensures that \(x \rightarrow (x \land y) \in F \). Thus, since A5 ensures that \((x \land y) \rightarrow x \in F \), \((x \land y) \equiv_F x \). Hence, \([x \land y]_F = [x]_F \land [y]_F = [x]_F \), i.e., \([x]_F \leq [y]_F \). Note that, analogously to the footnote 3, we can verify that \([x]_F = [y]_F \) implies \([x \land z]_F = [y \land z]_F \), \([x \rightarrow z]_F = [y \rightarrow z]_F \), \([z \rightarrow x]_F = [z \rightarrow y]_F \), and \([\Delta x]_F = [\Delta y]_F \). We show as an example that \([x]_F = [y]_F \) implies \([\Delta x]_F = [\Delta y]_F \). Let \([x]_F \leq [y]_F \). Then, \(x \rightarrow y \in F \). Thus, by (F3), \(\Delta (x \rightarrow y) \in F \). Since \(\Delta (x \rightarrow y) \leq \Delta x \rightarrow \Delta y \) by \(\Delta 5 \) and residuation, \(\Delta x \rightarrow \Delta y \in F \) by (F2). Hence, \([\Delta x]_F \leq [\Delta y]_F \). Analogously, \([\Delta y]_F \leq [\Delta x]_F \) follows from \([y]_F \leq [x]_F \). So \([x]_F = [y]_F \) implies \([\Delta x]_F = [\Delta y]_F \). Therefore, \(\equiv_F \) is a congruence.

(ii) and (iii) are analogous to those of Lemma 2.3.14 and those in proofs of Theorem 2.4.12 in [4].

The proof of (iv) reduces to showing that the only filters of a linearly ordered \(\text{skd}^* \Delta \) algebra \(A \) are \(\{1\} \) and the full algebra \(A \) itself. This is true because if a filter \(F \) has an element \(x \neq 1 \), then \(\Delta x = 0 \) and thus \(0 \in F \). Hence \(F = A \). \(\Box \)

Proposition 6 Let \(A \) be an \(\text{skd}^*_{\Delta} \) algebra and let \(a \in A \), \(a \neq 1 \) (the greatest element). Then there is a prime filter \(F \) on \(A \) not containing \(a \).

Proof Note that we may use the primeness (PF') in place
of (PF) by Lemma 1, and thus by Prime Filter Separation Principle in a distributive lattice, it is immediate. The proof is very analogous to that of Lemma 8.6.2 in [2].

Let A, a, 1 be as in the hypothesis. Then, $F_0 = \{1\} = \{x \in A : 1 \leq x\}$, is a filter separating 1 from a. We let E be the family of filters of A, which have 1 as a member but not a. E is non-empty, since it contains F_0. Now let C be any non-empty chain of E. Then, $\cup C \in E$. For clearly $1 \in \cup C$, and $a \not\in \cup C$. Then, it remains to show that $\cup C$ is a filter. Suppose $b, c \in \cup C$, but then there are $F', F'' \in C$ such that $b \in F'$ and $c \in F''$. But either $F' \subseteq F''$ or $F'' \subseteq F'$, and so either $(b \wedge c) \in F''$ or $(b \wedge c) \in F'$ because both F' and F'' are filters. But then in either case $(b \wedge c) \in \cup C$, and thus (F1) is satisfied. Similarly, we can show that (F2) is satisfied. The interesting point to check is that (F3) can be satisfied (with respect to an skd$_\Delta$ algebra): let $a \in \cup C$. Then, there is $F' \in C$ such that $a \in F'$. So, since F' is a filter, $\Delta a \in F'$. Hence, $\Delta a \in \cup C$, as desired.

By Zorn's Lemma, we may conclude that E has some maximal member F, which is a filter such that $1 \in F$ and $a \not\in F$. It remains to show that F is prime. Its proof is as usual (see the proof of Lemma 8.6.2 in [2] for it). □

Proposition 7 Each skd$_{(\Delta)}$ algebra is a subdirect product of linearly ordered skd$_{(\Delta)}$ algebras.
Proof Its proof is as usual (see the proof of Lemma 2.3.16 in [4]). □

Note that with respect to $\text{skd}^*\Delta$ algebras this theorem is a subdirect decomposition theorem because by Proposition 5 (iv) linearly ordered $\text{skd}^*\Delta$ algebras are simple, and thus subdirectly irreducible, which is not the case for skd^* algebras.

Let us associate with each formula A of $\text{sKD}_{(\Delta)}$ a term A' of the language of $\text{skd}^*_{(\Delta)}$ algebras by replacing the connectives and constants \neg, \rightarrow, $\&$, \wedge, \vee, $(\Delta,)$, f, t by function symbols and special elements \neg, \rightarrow, $*$, \wedge, \vee, $(\Delta,)$, 1 (or \top), 0 (or \bot), respectively, and replacing each propositional variable p_i by a corresponding object variable x_i.

Proposition 8 (i) Each formula which is an A-tautology for all linearly ordered $\text{skd}^*_{(\Delta)}$ algebras is an A-tautology for all $\text{skd}^*_{(\Delta)}$ algebras.

(ii) A is an A-tautology iff the identity $A' = 1$, i.e., \top, is true in A.

Proof (i) follows from (ii) and the subdirect product representation. (ii) is evident since the value of the term A' given by an evaluation v is $v_A(A)$. □

Theorem 1 (Weak completeness) $\text{sKD}_{(\Delta)}$ is complete
with respect to the class of \(skd^*_{\triangle} \) algebras, i.e., for each formula \(A \) the following are equivalent:

(i) \(A \) is provable in \(sKD_{\triangle} \), i.e., \(\vdash_{sKD_{\triangle}} A \),

(ii) For each linearly ordered \(skd^*_{\triangle} \) algebra \(A \), \(A \) is an \(A \)-tautology;

(iii) For each \(skd^*_{\triangle} \) algebra \(A \), \(A \) is an \(A \)-tautology.

Proof The implications of (i) to (ii) and (ii) to (iii) have been established. Thus, it suffices to show that (iii) to (i) holds:

Note that Proposition 4 says that the algebra \(A_{sKD_{\triangle}} \) of classes of equivalent formulas of \(sKD_{\triangle} \) is an \(skd^*_{\triangle} \) algebra. Thus, an \(A \) satisfying (iii) is an \(A_{sKD_{\triangle}} \)-tautology. Now let \(v(p_i) = [p_i]_{sKD_{\triangle}} \) for all propositional variables. Then \(v(A) = [A]_{sKD_{\triangle}} = [t]_{sKD_{\triangle}} \), and thus \(\vdash_{sKD_{\triangle}} A \leftrightarrow t \). Hence \(\vdash_{sKD_{\triangle}} A \). □

To achieve strong completeness for \(sKD_{\triangle} \), we add more definitions on a theory \(T \) to the definitions above. Let \(A \) be an \(skd^*_{\triangle} \) algebra. Note that elements of \(T \) are axioms of \(T \). An \(A \)-evaluation \(v \) is an \(A \)-model of \(T \) if \(v_A(a) = 1_A \), i.e., \(T_A \), for each axioms \(a \in T \). \(T \) is complete if for each pair \(A, B \) of formulas, \(T \vdash A \rightarrow B \) or \(T \vdash B \rightarrow A \). Note that corresponding to Lemma 1 it can be ensured that \(T \) is complete iff for each pair of \(A, B \) such that \(T \vdash A \lor B \), \(T \vdash A \) or \(T \vdash B \) (see Lemma 5.2.3 in [4]). We call this, i.e., the \(T \) of the second statement, also complete.

Lemma 2 Let \(A^n \) be \(A \& \cdots \& A \), \(n \) factors. \(sKD \)
proves:

(i) \((A \lor B)^n \leftrightarrow (A^n \lor B^n)\).
(ii) \((A \land B)^n \leftrightarrow (A^n \land B^n)\).

sKD\(\Delta\) proves:
(iii) \(\Delta(A \land B) \leftrightarrow (\Delta A \land \Delta B)\).

Proof Let \(A^n\) be \(A \& \cdots \& A\), \(n\) factors. For (i) and (ii), we first note that sKD proves:

(a) \((A \& A) \rightarrow (A \& A \& A)\); \(A^n \rightarrow A^{n-1}, 2 \leq n\).
(b) \((A \& A) \rightarrow A\); \(A^n \rightarrow A^{n-1}, 2 \leq n\).
(c) \(A^n \leftrightarrow A^m, 2 \leq n, m; A^2 \leftrightarrow A^0, 2 \leq n\).

We can easily prove these.

For (i) and (ii), we just show that \((A \lor B)^3 \leftrightarrow (A^3 \lor B^3)\) as an example. Note that \((A \lor B)^2 \leftrightarrow (A^2 \lor B^2)\) (see Lemma 2.2.24 in [4]):

For left to right, since \((A \lor B)^3 \leftrightarrow (A^3 \lor (A^2 \& B) \lor (A \& B^2)) \lor B^3\), we need to show that (*) \((A \& B^2) \rightarrow (A^3 \lor B^3)\) and (**) \((A^2 \& B) \rightarrow (A^3 \lor B^3)\). For (*), \((A \rightarrow B^2) \rightarrow ((A \& B^2) \rightarrow B^3)\) by Lemma 2.2.8 (6), which is also a theorem of sKD, in [4]. Since \(B^4 \rightarrow B^3\) by (b), \((A \rightarrow B^2) \rightarrow ((A \& B^2) \rightarrow B^3)\) by transitivity, A3, and MP. Similarly, since \(B^3 \rightarrow (A^3 \lor B^3)\) by A7, \((A \rightarrow B^2) \rightarrow ((A \& B^2) \rightarrow (A^3 \lor B^3))\). Analogously, we can show that \((B^2 \rightarrow A) \rightarrow ((A \& B^2) \rightarrow (A^3 \lor B^3))\) (we just note that by (a), \(A^2 \rightarrow A^3\). Thus, by AD, A8, and MP, \(((A \rightarrow B^2) \lor (B^2 \rightarrow A)) \rightarrow ((A \& B^2) \rightarrow (A^3 \lor B^3))\). Hence, by A10 and MP, \((A \& B^2) \rightarrow (A^3 \lor B^3)\). Analogously to (*), we can prove (**). Right to left is immediate by A7.
Analogously, just by iterating and using (c), we can show
\((A \lor B)^n \leftrightarrow (A^n \lor B^n)\).

For right to left of (iii), let \((A \land B) \rightarrow A\) by A5. Then,
by N, A20, and MP, \(\triangle(A \land B) \rightarrow \triangle A\). Analogously,
\(\triangle (A \land B) \rightarrow \triangle B\). Thus,
\(\triangle (A \land B) \rightarrow (\triangle A \land \triangle B)\) by AD,
A6, and MP.

For left to right of (iii), let \((\triangle A \land \triangle B) \rightarrow \triangle A\) by A5.
Then, by A18, transitivity, and MP, \((\triangle A \land \triangle B) \rightarrow A\).
Analogously, \((\triangle A \land \triangle B) \rightarrow B\). Thus,
\(\triangle (A \land B) \rightarrow (A \land B)\) by AD, A6, and MP, and so by N and A20,
\(\triangle (\triangle A \land \triangle B) \rightarrow \triangle (A \land B)\). Note that since \(\triangle\) formulas satisfy
Boolean properties, \(\triangle (\triangle A \land \triangle B) \leftrightarrow (\triangle \triangle A \land \triangle \triangle B)\).
Thus, \((\triangle \triangle A \land \triangle \triangle B) \rightarrow \triangle (A \land B)\). Now by A5, A19,
transitivity, and MP, \((\triangle A \land \triangle B) \rightarrow \triangle \triangle A\). Analogously,
\((\triangle A \land \triangle B) \rightarrow \triangle \triangle B\). Hence, by AD, A6, and MP, \((\triangle A \land \triangle B) \rightarrow (\triangle \triangle A \land \triangle \triangle B)\). Therefore, by transitivity and
MP, \((\triangle A \land \triangle B) \rightarrow \triangle (A \land B)\), as desired. \(\square\)

Proposition 9 (i) \(T\) is complete iff the \(\text{skd}^*_{(\triangle)}\) algebra
\(A_T\) is linearly ordered.

(ii) If \(T\) is a theory and \(T \not\subset A\), then there is a
consistent complete supertheory \(T' \supseteq T\) such that \(T' \not\subset A\).

Proof (i) Left to right. Let \(T\) be complete and \(A, B\) be
the pair of formulas of its language. We note that \((*)\) \([A]_T \leq [B]_T\) iff \(T \vdash A \rightarrow B\). Since \(T\) is complete, either \(T \vdash \)
A → B and thus by (*) [A]_T ≤ [B]_T, or T ⊨ B → A and thus by (*) [B]_T ≤ [A]_T. Hence ≤ is linear and thus A_T is linearly ordered.

Right to left. Let A_T be linearly ordered and A, B be as above. Then, either [A]_T ≤ [B]_T and T ⊨ A → B, or [B]_T ≤ [A]_T and T ⊨ B → A. Hence, T is complete.

(ii) We shall use the completeness property of T, which corresponds to (PF') in Lemma 1. Where Δ is a set of formulas not necessarily a theory, Δ ⊨ A can be thought of as saying that A is deducible from the 'axioms' Δ. The set of {A: Δ ⊨ A} is intuitively the smallest theory containing the axioms Δ, and we shall label it as Th(Δ).

Now take an enumeration \{A_n: n ∈ ω\} of the well-formed formulas of sKD(Δ). We define a sequence of sets by induction as follows:

\[
T_0 = \{A': T ⊨_{sKD(Δ)} A'\}.
\]
\[
T_{i+1} = \begin{cases}
 \text{Th}(T_i \cup \{A_{i+1}\}) & \text{if it is not the case that } T_n, A_{i+1} ⊨_{sKD(Δ)} A \\
 T_i & \text{otherwise.}
\end{cases}
\]

Let T' be the union of all these T_n's. It is easy to see that T' is a theory not containing A (and thus it is consistent). Also we can show that it is complete.

Suppose toward contradiction that B ∨ C ⊒ T' and B, C ⊒ T'. Then the theories obtained from T' ∪ B and T' ∪ C must both contain A. It follows that there is a conjunction of members of T' T'' such that T'' ∨ B ⊨_{sKD} A and T'' ∨ C ⊨_{sKD} A. Then, by A8, Proposition 1 (i),
AD, and MP, $\vdash_{sKD} ((T'' \land B)^2 \lor (T'' \land C)^2) \rightarrow A$. Hence, since (i) and (ii) of Lemma 2 ensure that $\vdash_{sKD} ((T''^2 \land B^2) \lor (T''^2 \land C^2)) \rightarrow A$, by A2, A9, and MP, $\vdash_{sKD} (T''^2 \land (B^2 \lor C^2)) \rightarrow A$, and thus $\vdash_{sKD} (T'' \land (B \lor C))^2 \rightarrow A$. Therefore, $T'' \land (B \lor C) \vdash_{sKD} A$ by Proposition 1 (i). From this we get that $T' \vdash A$, which is contrary to our supposition.

In an analogy to the above, we can show this completeness with respect to sKDΔ. Suppose toward contradiction that $B \lor C \in T'$ and $B, C \not\in T'$. Then the theories obtained from $T' \cup B$ and $T' \cup C$ must both contain A. It follows that there is a conjunction of members of $T' \land T''$ such that $T'' \land B \vdash_{sKD\Delta} A$ and $T'' \land C \vdash_{sKD\Delta} A$. Then, by A8, Proposition 1 (ii), AD, and MP, $\vdash_{sKD\Delta} (\Delta (T'' \land B) \lor \Delta (T'' \land C)) \rightarrow A$. Hence, since A17 and (iii) of Lemma 2 ensure that $\vdash_{sKD\Delta} ((\Delta T'' \land \Delta B) \lor (\Delta T'' \land \Delta C)) \rightarrow A$, by A2, A9, and MP $\vdash_{sKD\Delta} (\Delta T'' \land (\Delta B \lor \Delta C)) \rightarrow A$, and thus $\vdash_{sKD\Delta} \Delta (T'' \land (B \lor C)) \rightarrow A$. Therefore, $T'' \land (B \lor C) \vdash_{sKD\Delta} A$ by Proposition 1 (ii). From this we get that $T' \vdash A$, which is contrary to our supposition. □

By using Proposition 9 (and Soundness as usual), we can easily show that

Theorem 2 (Strong completeness) Let T be a theory over sKD$\langle \Delta \rangle$ and let A be a formula. Then the following are
equivalent:

(i) \(T \vdash_{\text{sKD}_\Delta} A \).

(ii) For each linearly ordered \(\text{sKD}^*_\Delta \) algebra \(A \) and each \(A \)-model \(v \) of \(T \), \(v_A(A) = 1_A \), i.e., \(T_A \).

(iii) For each \(\text{sKD}^*_\Delta \) algebra \(A \) and each \(A \)-model \(v \) of \(T \), \(v_A(A) = 1_A \), i.e., \(T_A \).

5. \(\text{sKD}_\forall(\Delta) \): the first order extension of \(\text{sKD}_\Delta \)

The completeness theorems for fuzzy predicate logics presented in [3], [4] may generalize for the present situation.

A trivial generalization of those of section 6 in [3] and Chapter V in [4] gives the notions of a language, its interpretations, and formulas for \(\text{sKD}_\forall(\Delta) \) as follows:

Given a linearly ordered \(\text{sKD}^*_\Delta \) algebra \(A \), an \(A \)-interpretation, i.e., an \(A \)-structure, of a language consisting of some predicates \(P \in \text{Pred} \) and constants \(c \in \text{Const} \) is a structure \(M = (M, (r_P)_{P \in \text{Pred}}, (m_c)_{c \in \text{Const}}) \), where \(M \neq \emptyset \), \(r_P : M^{\text{pred}(P)} \rightarrow A \), and \(m_c \in M \) (for each \(P \in \text{Pred}, c \in \text{Const} \)).

Let \(L \) be a predicate language and let \(M \) be an \(A \)-structure for \(L \). An \(M \)-evaluation of object variables is a mapping \(e \) assigning to each object variable \(x \) an element \(e(x) \in M \). Let \(e, e' \) be two evaluations. \(e \equiv_X e' \) means that \(e(y) = e'(y) \) for each variable \(y \) distinct from \(x \).

The value of a term given by \(M, e \) is defined as follows: \(|x|_{M, e} = e(x) \) and \(|c|_{M, e} = m_c \). The (truth) value \(|A|_{M, e}^A \) of a formula (where \(e(x) \in M \) for each variable \(x \)) is defined
inductively: for \(A \) being \(P(x, \cdots, c, \cdots) \),
\[
|P(x, \cdots, c, \cdots)|^A_{M,e} = r_P(e(x), \cdots, m_c, \cdots),
\]
the value commutes with connectives, and
\[
|(\forall x)A|^A_{M,e} = \inf\{|A|^A_{M,e}: e = x e'\}
\]
if this infimum exists, otherwise undefined, and similarly
for \(\exists x \) and sup. \(M \) is \(A \)-safe if all infs and sups needed
for definition of the value of any formula exist in \(A \), i.e.,
\(|A|^A_{M,e} \) is defined for all \(A, e \).

Let \(A \) be a formula of a language \(L \) and let \(M \) be a safe
\(A \)-structure for \(L \). The truth value of \(A \) in \(M \) is
\[
|A|^A_M = \inf\{|A|^A_{M,e}: e M\text{-evaluation.}
\]

A formula \(A \) of a language \(L \) is an \(A \)-tautology if \(|A|^M = 1_A \) for each safe \(A \)-structure \(M \), i.e., \(|A|^A_{M,e} = 1 \) for each
safe \(A \)-structure \(M \) and each \(M \)-evaluation of object
variables.

The axioms of sKD\(\forall (\Delta) \) are those of sKD\((\Delta) \) plus the
following set of axioms for quantifiers (taken by Hájek [4]
as those of the basic predicate logic BL\(\forall \)):

1. \((\forall x)A(x) \rightarrow A(t) \) (t substitutable for \(x \) in \(A(x) \))
2. \(A(t) \rightarrow (\exists x)A(x) \) (t substitutable for \(x \) in \(A(x) \))
3. \((\forall x)(A \rightarrow B) \rightarrow (A \rightarrow (\forall x)B) \) (\(x \) not free in \(A \))
4. \((\exists x)(A \rightarrow B) \rightarrow ((\exists x)A \rightarrow B) \) (\(x \) not free in \(B \))
5. \((\forall x)(A \lor B) \rightarrow ((\forall x)A \lor B) \) (\(x \) not free in \(B \))

Rules of inference for sKD\(\forall (\Delta) \) are MP, AD, N, and
generalization (GN), i.e., from \(A \) infer \((\forall x)A \). More exactly,
for sKD\(\forall \) MP, AD, and GN, and for sKD\(\forall \Delta \) MP, AD, N,
and GN all. Note that in sKD\(\forall (\Delta) \) one quantifier is
definable from the other one and the negation, for instance,
\((\exists x)A := \sim(\forall x)\sim A\). Thus the above set of axioms for quantifiers could be simplified, i.e., \((\forall 3)\), \((\exists 1)\), and \((\exists 2)\) become provable as in the Łukasiewicz predicate logic \(L\forall\) (cf. see Remark 5.4.2 in [4]).

Proposition 12
(i) The axioms \((\forall 1)\) and \((\forall 2)\) are \(A\)-tautologies for each linearly ordered \(skD(\Delta)\) algebra \(A\).
(ii) The rules MP, AD, N, and GN preserve \(A\)-tautologyhood.

Proof (i) By Lemmas 5.1.9 in [4].
(ii) MP and GN are by Lemma 5.1.10 in [4]. Thus, for \(skD(\forall(\Delta))\) we need just to consider that the rules AD, N preserve \(A\)-tautologyhood. For AD, we show that
(1) for any formulas \(A, B\), safe \(A\)-structure \(M\), and evaluation \(e\),
\[|A|^A_{M,e} \ast |B|^A_{M,e} \preceq |A \land B|^A_{M,e};\]
thus, if \(|A|^A_{M,e} = |B|^A_{M,e} = 1_A\), then \(|A \land B|^A_{M,e} = 1_A\), and

(2) consequently,
\[|A|^A_M \ast |B|^A_M \preceq |A \land B|^A_M;\]
thus if \(A\), \(B\) are \(1_A\)-true in \(M\), then \(A \land B\) is.

(1) is as in propositional calculus. To prove (2) put \(|A|_w = a_w, \inf_w a_w = a, |B|_w = b_w, \text{ and } \inf_w b_w = b\). We have to show that \(\inf_w a_w \ast \inf_w b_w \preceq \inf_w (a_w \land b_w)\)
(indices \(A, M\) deleted, \(w\) runs over all evaluations \(\equiv_x e\)).
Since sKD ∀(Δ) proves (A & B) → (A ∧ B) and (∀x)(A ∧ B) ⇐ ((∀x)A ∧ (∀x)B) (see Corollary 5.1.22 (17) [4]), it can be obtained that ((∀x)A & (∀x)B) → (∀x)(A ∧ B). This ensures that \(\inf_w a_w * \inf_w b_w \leq \inf_w (a_w \land b_w) \).

For \(N \), we show that (3) for any formulas A, B, safe A-structure M, and evaluation e,

if \(|A|^A_{M,e} = 1_A \), then \(|\Delta A|^A_{M,e} = 1_A \), and

(4) consequently,

if \(|A|^A_M = 1_A \), then \(|\Delta A|^A_M = 1_A \),

thus if A is 1_A-true in M, then \(\Delta A \) is.

(3) is as in propositional calculus with \(\Delta \) from the property \(1 = \Delta 1 \) of \(\Delta \). To prove (4) put \(|A|_w = a_w \), \(\inf_w a_w = a \). We have to show that

\[\inf_w a_w = 1 \text{ implies } \inf_w \Delta a_w = 1 \]

(indices A, M deleted, w runs over all evaluations \(\equiv_x e \)).

Since by Lemma 8 in [8] \((∀x)\Delta A ⇐ Δ (∀x)A \), and thus \(\inf_w \Delta a_w = Δ \inf_w a_w \), this is just to show that \(a = 1 \) implies \(Δ a = 1 \). It is immediate as in (1). □

Definitions of a theory T over sKD ∀(Δ) are almost the same as sKD (Δ). We need just to consider such definitions in M. Let A be a linearly ordered skd*(Δ) algebra and let M be a safe A-structure for the language of T. M is an A-model of T if all axioms of T are 1_A-true in M, i.e., \(|A|^A_M = 1_A \) in each A ∈ T. Then, Proposition 12 ensures that sKD ∀(Δ) is sound with respect to linearly ordered skd*(Δ) algebras as follows.
Proposition 13 (Soundness) Let T be a theory in the language of T over $sKD \forall (\Delta)$ and let A be a formula of T. If $T \vdash A$, then $|A|^A_M = 1_A$ for each linearly ordered $skd^*(\Delta)$ algebra A and each A-model M of T.

Proof By induction on the length of a proof. □

To investigate completeness for $sKD \forall (\Delta)$, we have the same definitions on “consistency” and “completeness” of a theory T as in $sKD(\Delta)$. We, moreover, define the Henkinness of T (over $sKD \forall (\Delta)$) as follows: T is Henkin if for each closed formula of the form $(\forall x)A(x)$ unprovable in T, i.e., $T \not\vdash (\forall x)A(x)$, there is a constant c in the language of T such that $A(c)$ is unprovable in T, i.e., $T \not\vdash A(c)$.

For each theory T over $sKD \forall (\Delta)$, let A_T be the algebra of classes of T-equivalent closed formulas with the usual operations. It is clear that A_T is an $skd^*(\Delta)$ algebra.

Lemma 5 For each theory T and each closed formula A, if $T \not\vdash A$, then there is a complete Henkin supertheory T' of T such that $T' \not\vdash A$.

Proof See the proofs of Proposition 9 (ii) above and Lemma 5.2.7 in [4]. □

Lemma 6 For each complete Henkin theory T and each
closed formula A, if $T
vdash A$, then there is a linearly ordered $skd^*_{(\Delta)}$ algebra A and A–model M of T such that $|A|^A_M < 1_T$.

Proof By Lemma 5.2.8 in [4]. □

By using Lemmas 5 and 6, we can show the completeness for $sKD\forall_{(\Delta)}$ as follows.

Theorem 4 (Completeness) Let T be a theory over $sKD\forall_{(\Delta)}$ and let A be a formula. T proves A over $sKD\forall_{(\Delta)}$ iff $|A|^A_M = 1_A$ for each linearly ordered $skd^*_{(\Delta)}$ algebra A, each safe A–model M of T.

Remark 2 Note that Yang [8] proved that wB–sKD is equivalent to sKD_{Δ}. Thus, since wB–$sKD\forall$ is obtained by adding to wB–sKD the same additional axioms and deduction rule for quantifiers as $sKD\forall_{\Delta}$, i.e., $(\forall 1)$, $(\forall 2)$, $(\forall 3)$, $(\exists 1)$, $(\exists 2)$, and GN, it can be ensured that $sKD\forall_{\Delta}$ is equivalent to wB–$sKD\forall$.
References

Department of Philosophy
Chungbuk National University
E-mail: yanges2@hanmail.net
ARTICLE ABSTRACTS

Algebraic completeness results for sKD and its Extensions

Eunsuk Yang

This paper investigates algebraic semantics for sKD and its extensions sKD\(\triangle\), sKD\(\forall\), and sKD\(\forall\(\triangle\)): sKD is a variant of the infinite-valued Kleene-Dienco logic KD; sKD\(\triangle\) is the sKD with the Baaz’s projection \(\triangle\); and sKD\(\forall\) and sKD\(\forall\(\triangle\)\) are the first order extensions of sKD and sKD\(\triangle\), respectively. I first provide algebraic completeness for each of sKD and sKD\(\triangle\). Next I show that each sKD\(\forall\) and sKD\(\forall\(\triangle\)\) is algebraically complete.

[Key Words] sKD, sKD\(\triangle\), sKD\(\forall\), sKD\(\forall\(\triangle\)\), algebraic semantics